Advertisement

X-Ray Diffraction from Live Muscle Fibres

  • A. SvenssonEmail author
  • J. Bordas
  • F.B. de la Cuesta
Chapter
Part of the Lecture Notes in Physics book series (LNP, volume 776)

Abstract

The previous chapter shows how small-angle X-ray Diffraction can be used to study the organization of collagen fibres in tissue, proposing this technique as a diagnosis tool. In this chapter, synchrotron small-angle X-ray diffraction (SAXD) by using high-angle and temporal resolution is presented as an essential tool in structural functional studies of skeletal muscle tissues. SAXD studies of muscle fibres involve the combination of mechanical and diffraction methods and provide insights into the molecular mechanisms responsible for the generation of force and motion in active muscle. These studies are made possible because of the highly ordered arrangement of the contractile proteins, myosin and actin, in the sarcomere, the smallest functional repeating unit of the muscle cell. The possibility to collect diffraction diagrams with high angular and temporal resolutions at modern third-generation synchrotron radiation sources together with new data processing algorithms together and two-dimensional photon counting detectors allow structural and functional studies of live muscle tissues. The review covers the basics of X-ray small-angle diffraction, instrumentation and mathematical methods used in data analysis. A general description of each of these points has been presented in Chap.1 and 2. It provides new results on the axial disposition of the myosin heads and their interpretation from analysing the interference fringes that carve the diffraction orders into clusters of peaks.

Keywords

Sarcomere Length Myosin Head Interference Peak Axial Disposition Structure Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Huxley H.E.R., Faruqi A.R., Bordas J., Koch M.H.J., Milch J.R. Nature 284, 140 (1980).Google Scholar
  2. 2.
    Huxley H.E.R., Simmons M., Faruqi A.R., Kress M., Bordas J., Koch M.H. J. Pro. Natl. Acad. Sci. USA 78, 2297 (1981).Google Scholar
  3. 3.
    Huxley H.E.R., Simmons M., Faruqi A.R., Kress M., Bordas J., Koch M.H.J. J. Mol. Biol. 158, 637 (1982).Google Scholar
  4. 4.
    Huxley H.E.R., Simmons M., Faruqi A.R., Kress M., Bordas J., Koch M.H.J. J. Mol. Biol. 169, 469 (1983).CrossRefGoogle Scholar
  5. 5.
    Rosenbaum G., Holmes K.C., Witz J. Nature 230, 434 (1971).CrossRefADSGoogle Scholar
  6. 6.
    Holmes K.C., Rosenbaum G.J. Synchrotron Rad. 5, 147 (1998).CrossRefGoogle Scholar
  7. 7.
    Squire J. The Structural Basis of Muscle Contraction. Plenum Press, New York and London (1981).Google Scholar
  8. 8.
    Kabsch W., Mannherz E.G., Suck D., Pai E.F., Holmes K.C. Nature 347, 37 (1990).CrossRefADSGoogle Scholar
  9. 9.
    Rayment I., Rypniewski W.R., Schmidt-Báse K., Smith R., Tomchick D.R., Benning M.M., Winklemann D.A., Wesenberg G., Holden H.M. Science 261, 50 (1993).CrossRefADSGoogle Scholar
  10. 10.
    Bordas, J., Diakun G.P., Diaz F.G., Harries J.E., Lewis R.A., Lowy J., Mant G.R., Martin-Fernandez M.-L. Towns-Andrews E. J. Mus. Res. Cell Mot. 14, 311 (1993).CrossRefGoogle Scholar
  11. 11.
    Irving M., Lombardi V., Piazzesi G., Ferenczi M.A. Nature 357, 156 (1992).CrossRefADSGoogle Scholar
  12. 12.
    Irving M., Allen T.S., Sabido-David C., Craik J.S., Brandmeier B.D., Kendrick-Jones J., Corrie J.E.T., Trentham D.R., Goldman Y.E. Nature 375, 688 (1995).CrossRefADSGoogle Scholar
  13. 13.
    Dobbie I., Linari M., Piazzesi G., Reconditi M., Koubassova N., Ferenczi M.A., Lombardi V., Irving M. Nature, 396, 383 (1998).CrossRefADSGoogle Scholar
  14. 14.
    Piazzesi G., Reconditi M., Linari M., Lucii L., Sun Y.B., Narayanan T., Boesecke P., Lombardi V., Irving M. Nature 145, 659 (2002).CrossRefADSGoogle Scholar
  15. 15.
    Martin-Fernandez M.L., Bordas J., Diakun G., Harries J., Lowy J., Mant G.R., Svensson A. and Towns-Andrews E.J. Mus. Res. Cell Mot. 15, 319 (1994).Google Scholar
  16. 16.
    Onuki H., Elleaume P. et al., Undulators, Wigglers, and Their Applications, ISBN 0-415-28040-0, 69 (2003).Google Scholar
  17. 17.
    Walker R.P. Insertion Devices: Undulators and Wigglers, (98-04) CERN Summer School, p:129–185.Google Scholar
  18. 18.
    X-ray data booklet, Sect. 2, p:2-1–2-16 (2001).Google Scholar
  19. 19.
    Chubar O., Elleaume P., Accurate and Efficient Computation of Synchrotron Radiation in the Near Field Region, EPAC98 Conference Proceedings Stockholm, 1177(1998).Google Scholar
  20. 20.
  21. 21.
    Gabriel A. Rev. Sci. Instrum. 48(10), 1303 (1977).CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    Hendrix J., Koch M.H.J., Bordas J. J. Appl. Cryst. 12, 467 (1979).CrossRefGoogle Scholar
  23. 23.
    Worgan J.S., Lewis R., Fore N.S., Sumner I.L., Berry A., Parker B., d’Annunzio F., Martin-Fernandez M.L., Towns-Andrews E., Harries J.E., Mant G.R., Diakun G.P., Bordas J. Nuc. Instrum. Meth. Phys. Res. A291 447(1990).CrossRefADSGoogle Scholar
  24. 24.
    Lewis R.A., Berry A., Hall C.J., Helsby W.I., Parker B. Nucl. Instr. Methd. A454, 165 (2000).CrossRefADSGoogle Scholar
  25. 25.
    Berry A., Helsby W.I., Parker B.T., Hall C.J., Buksh P.A., Hill A., Clague N., Hillon M., Corbett G., Clifford P., Tidbury A., Lewis R.A., Cernik B.J., Barnes P., Derbyshire G.E. Nucl. Instr. Meth. A513 (1–2), 260 (2003).ADSGoogle Scholar
  26. 26.
    Helsby W.I., Berry A., Buksh P.A., Hall C.J., Lewis R.A. Nucl. Instrum. Meth., A510 (1–2), 138 (2003).ADSGoogle Scholar
  27. 27.
    Huxley A.F., Niedergerke R. Nature 173, 971 (1954).CrossRefADSGoogle Scholar
  28. 28.
    Huxley E.H., Hansen J. Nature 173, 973 (1954).CrossRefADSGoogle Scholar
  29. 29.
    Knappeis G.G., Carlsen F. J. Cell. Biol. 13, 323 (1962).CrossRefGoogle Scholar
  30. 30.
    Huxley H.E.J. Biophys. Acta 12, 387 (1957).CrossRefGoogle Scholar
  31. 31.
    Egelmann E.H., DeRosier D.J. J. Mol Biol. 166, 623 (1983).CrossRefGoogle Scholar
  32. 32.
    Hanson J., Lowey J. J. Mol. Biol. 6, 46 (1963).CrossRefGoogle Scholar
  33. 33.
    Huxley H.E., Brown W. J. Mol. Biol. 30, 383 (1967).Google Scholar
  34. 34.
    Milligan R.A., Flicker P.F. J. Cell Biol. 105, 29 (1987).CrossRefGoogle Scholar
  35. 35.
    Hanson J. Proc. Roy. Soc. Lond. (Biol.) 183, 39–58 (1973).CrossRefADSGoogle Scholar
  36. 36.
    Lowey S. Subunits in Biological systems- Part A, S.N. Timasheff, G.D. Fasman and M. Dekker (Eds.). New York, 201 (1971).Google Scholar
  37. 37.
    Knight P., Trinick J.A. J. Mol. Biol. 177, 461 (1984).CrossRefGoogle Scholar
  38. 38.
    Morgan M., Perry S.V., Ottaway J. Biochem. J. 177, 687 (1976).Google Scholar
  39. 39.
    Kensler R.W., Stewart M. J. Cell Biol. 96, 1797 (1986).CrossRefGoogle Scholar
  40. 40.
    Squire J.M. Nature 233, 457 (1971).CrossRefADSGoogle Scholar
  41. 41.
    Squire J.M. J. Mol. Biol. 72, 125 (1972).CrossRefGoogle Scholar
  42. 42.
    Vainshtein B.K. Diffraction of X-Rays by Chain Molecules. Elsevier Publishing Company, London (1966).Google Scholar
  43. 43.
    Klug AQ., Crick F.C.H., Wyckoff H.W. Acta Cryst 11, 199 (1958).CrossRefGoogle Scholar
  44. 44.
    Juanhuix J., Bordas J., Campmany J., Svensson A., Bassford M.L., Narayanan T. Biophys. J. 80, 1429 (2001).CrossRefGoogle Scholar
  45. 45.
    Juanhuix J. Estructura molecular I funció dels músculs vius, PhD thesis, Autonomous University of Barcelona, Bellaterra, Spain (2001).Google Scholar
  46. 46.
    Bliss N., Bordas J., Fell B.S., Harris N.W., Helsby W.I., Mant G.R., Towns- Andrew E. Rev. Sci. Inst. 66(2), 1311 (1995).CrossRefADSGoogle Scholar
  47. 47.
    Boesecke P., Diat O., Rasmussen B. Rev. Sci. Instrum. 66, 1636 (1995).CrossRefADSGoogle Scholar
  48. 48.
    Koch M.H.J., Bendall P. J. Proc. Digital Equipment Computer User Soc. 13 (1981).Google Scholar
  49. 49.
    Mant G., Bordas J., private communications.Google Scholar
  50. 50.
    Hammersley A.P., Svensson S.O., Thompson A. Nucl. Instr. Meth. A346, 312 (1994).ADSGoogle Scholar
  51. 51.
    Press W.H., Flannery B.P., Teukolsky S.A., Vetterling W.T. Numerical Recipes in Fortran 77 , 2nd Ed. The Art of Scientific Computing. Cambridge University Press, Cambridge (1992).Google Scholar
  52. 52.
    Miles C.V. Macromolecular Modelling Of Muscle Structure: A Comparison With X-Ray Diffraction Results, PhD thesis, University of Leciester, Leicester, UK (1997).Google Scholar
  53. 53.
    Bordas J., Lowy L., Svensson A., Harries J.E., Diakun G.P., Gandy J., Miles C.V., Mant G.R., Towns-Andrews E. Biophys. J. 68, 99S (1995).Google Scholar
  54. 54.
    Bordas J., Svensson A., Rothery M., Lowy J., Daikun G.P., Boesecke P., Biophys. J. 77, 3197 (1999).CrossRefGoogle Scholar
  55. 55.
    Gordon A.M., Huxley A.F. J. Physiol. 184, 170 (1966).Google Scholar
  56. 56.
    Linari M., Piazzesi G., Dobbie I., Koubassova N., Reconditi M., Narayanan T., Diat O., Irving M., Lombardi V. Proc. Natl. Acad. Sci. USA 97, 7226 (2000).CrossRefADSGoogle Scholar
  57. 57.
    Bordas J., Mant G.R., Diakun G.P., Nave C. J. Cell Biol. 105, 1311 (1987).CrossRefGoogle Scholar
  58. 58.
    Huxley H.E., Reconditi M., Stewart A., Irving T. Biophys. J. 84, 139a (2003).Google Scholar
  59. 59.
    Reconditi M., Linari M., Lucii L., Stewart A., Sun Y.B., Boesecke P., Narayanan T., Fischetti R.F., Irving T., Piazzesi G., Irving M., Lombardi V. Nature, 428, 578 (2004).CrossRefADSGoogle Scholar
  60. 60.
    Bassford M.L. Modelling the molecular structure of muscle with comparison to x-ray diffraction data, PhD thesis, University of Leicester, Leicester, UK (2001).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.CELLSBarcelonaSpain
  2. 2.LLSBarcelona
  3. 3.Spain and Dept London Centre of NanotechnologyUniversity CollegeLondonUK

Personalised recommendations