Diagnosis Applications of Non-Crystalline Diffraction of Collagen Fibres: Breast Cancer and Skin Diseases

  • M. CostaEmail author
  • N. Benseny-Cases
  • M. Cócera
  • C.V. Teixeira
  • M. Alsina
  • J. Cladera
  • O. López
  • M. Fernández
  • M. Sabés
Part of the Lecture Notes in Physics book series (LNP, volume 776)


In previous chapters, the basis of SAXS for the study of biological systems like proteins in solution have been presented. The SAXS patterns of proteins in solution present, in general, broad dependences with the scattering vector, and the interpretation requires a huge component of modelling. In this chapter and in the following one, it is shown how SAXS technique can be used to study biological systems that are partially crystalline and with a large crystalline cells. This is done by analysing the diffraction obtained from these systems at small angles. In this chapter, a new approach to the application of small-angle X-ray scattering (SAXS) for diagnosis using the diffraction pattern of collagen is presented. This chapter shows the development of a new strategy in the preventive diagnosis of breast cancer following changes on collagen from breast connective tissue. SAXS profiles are related to different features in cutaneous preparations and to the supra-molecular arrangement of skin layers (stratum corneum, epidermis and dermis), in order to introduce objective values on the diagnosis of different skin pathologies. Working parameters (size, thickness) and methods (freezing, paraffin embedment) have been established. The results suggest that collagen diffraction patterns could be used as diagnostic indicators; especially for breast cancer and preliminary results obtained with skin collagen are promising too.


Breast Cancer Stratum Corneum Collagen Molecule Healthy Skin Skin Collagen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kielty C.M., Grant M.E. The collagen family: structure, assembly, and organization of the extracellular matrix. In: P.M. Royce and B. Steinmann (Eds.), Connective Tissue and its Heritable Disorders, p 159–221. Wiley-Liss, Inc., New York (2002).CrossRefGoogle Scholar
  2. 2.
    Ottani V. Raspanti M., Ruggeri A. Collagen structure and functional implications. Micron 32 (3), 251–260 (2001).CrossRefGoogle Scholar
  3. 3.
    Jones E.Y. Miller A. Analysis of structural design-features in collagen. J. Mol. Biol. 218(1), 209–219 (1991).CrossRefGoogle Scholar
  4. 4.
    Cameron G.J., Alberts I.L., Laing J.H., Wess T.J. Structure of type I and type III heterotypic collagen fibrils: An X-ray diffraction study. J. Struct. Biol. 137(1–2), 15–22 (2002).CrossRefGoogle Scholar
  5. 5.
    Eikenberry E.F., Brodsky B., Parry D.A.D. Collagen fibril morphology in developing chick metatarsal tendons 1: X-ray-diffraction studies. Int. J. Biol. Macromol. 4(6), 393–398 (1982).CrossRefGoogle Scholar
  6. 6.
    Hulmes D.J.S., Wess T.J., Prockop D.J., Fratzl P. Radial packing, order, and disorder in collagen fibrils. Biophys. J. 68(5), 1661–1670 (1995).CrossRefADSGoogle Scholar
  7. 7.
    Wess T.J., Hammersley A.P., Wess L., Miller A. Molecular packing of type I collagen in tendon. J. Mol. Biol. 275(2), 255–267 (1995).CrossRefGoogle Scholar
  8. 8.
    Kadler K.E., Holmes D.F., Trotter J.A., Chapman J.A. Collagen fibril formation. Biochem. J. 316, 1–11 (1996).Google Scholar
  9. 9.
    Gorbeaux F., Belamie E., Mosser G., Davidson P., Panine P., Giraud-Guille M.M. Cooperative ordering of collagen triple helices in the dense state. Langmuir 23, 6411–6417 (2007).CrossRefGoogle Scholar
  10. 10.
    Fessas D., Signorelli M., Schiraldi A., Kennedy C.J., Wess T.J., Hassel B., Nielsen K. Thermal analysis on parchments I: DSC and TGA combined approach for heat damage assessment. Thermochim Acta 447, 30–35 (2006).CrossRefGoogle Scholar
  11. 11.
    Noorlander M.L., Melis P., Jonker A., Van Noorden C.J.F. A Quantitative. Method to determine the orientation of collagen fibers in the dermis}. J. Histochem. Cytochem. 50(11), 1469–1474 (2002).Google Scholar
  12. 12.
    Eikenberry E.F., Brodsky B., Parry D.A.D. Collagen fibril morphology in developing chick metatarsal tendons. 2: electron microscopy studies. Int. J. Biol. Macromol. 4(6), 322–328.Google Scholar
  13. 13.
    Derwin K.A. Soslowsky L.J. A quantitative investigation of structure-function relationships in a tendon fascicle model. J. Biomech. Eng. 121(6),598–604 (1999).CrossRefGoogle Scholar
  14. 14.
    Bozzola J.J., Russell L.D. Electron Microscopy: Principles and Techniques for Biologists. Jones and Bartlett, Sudbury, MA (1999).Google Scholar
  15. 15.
    Orgel J.P.R.O., Miller A., Irving T.C., Fischetti R.F., Hammersley A.P., Wess T.J. The in situ supermolecular structure of type I collagen. Structure 9, 1061–1069 (2001).CrossRefGoogle Scholar
  16. 16.
    Moger C.J., Barrett R., Bleuet R., Bradley D.A., Ellis R.E., Green E.M., Knapp K.M., Muthuvelu P., Winlove C.P. Title: Regional variations of collagen orientation in normal and diseased articular cartilage and subchondral bone determined using small angle X-ray scattering (SAXS). J. Osteoarthr. Cartil. 15(6), 682–687 JUN (2007).CrossRefGoogle Scholar
  17. 17.
    Lewis R.A., Rogers K.D., Hall C.J., et al. Breast cancer diagnosis using scattered X-rays. J. Synchrotron Radiat. 7, 348–352 (2000).CrossRefGoogle Scholar
  18. 18.
    Fernàndez M.,. Keyrilöinen J., Serimaa R. et al. Small-angle x-ray scattering studies of human breast tissue samples. Phys. Med. Biol. 47(4), 577–5 (2002)CrossRefGoogle Scholar
  19. 19.
    Lim Goh K., Hiller J., Louise Haston J., Holmes D.F., Kadler K.E., Murdoch A., Meakin J.R., Wess T.J. Analysis of collagen fibril diameter distribution in connective tissues using small-angle X-ray scattering. Biochim. Biophys. Acta 1722, 183–188 (2005).Google Scholar
  20. 20.
    Fratzl P., Paris O., Klaushofer K., Landis W.J. Bone mineralization in an osteogenesis imperfecta mouse model studied by Small-Angle X-ray Scattering. J. Invest. Clin. 97(2), 396–402 (1996).CrossRefGoogle Scholar
  21. 21.
    de Vries H.J.C., Enomoto D.N.H., Van Marle J., Van Zuijlen P.M., Mekkes J.R., Bos J.D. Dermal organization in scleroderma: the fast fourier transform and the laser scatter method objectify fibrosis in nonlesional as well as lesional skin. Lab Invest 80, 1281–1289 (2000).CrossRefGoogle Scholar
  22. 22.
    Pucci-Minafra I., Andriolo M., Basiricò L., Alessandro R., Luparello C., Buccellato C., Garbelli R., Minafra S. Absence of regular \(\alpha\) (2)(I) collagen chains in colon carcinoma biopsy fragments. Carcinogenesis 19(4), 575–5 (1998).CrossRefGoogle Scholar
  23. 23.
    Kauppila S., Stenback F., Risteli J., Jukkola A., Risteli L. (1998) Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J. Pathol. 86(3), 262–268.CrossRefGoogle Scholar
  24. 24.
    Taylor K.M., Morgan H.E., Johnson A. et al. Structure-function analysis of LIV-1, the breast cancer-associated protein that belongs to a new subfamily of zinc transporters. Biochem. J. 375, 51–59 (2003).CrossRefGoogle Scholar
  25. 25.
    Fernàndez M., Keyriläinen J., Karjalainen-Lindsberg M.L., Leidenius M., von Smitten K., Fiedler S., Suortti P. Human breast tissue characterisation with small-angle X-ray scattering. Spectro. Int. J. 18(2), 167–176 (2004).Google Scholar
  26. 26.
    Suhonen H., Fernàndez M., Bravin A., Keyriläinen. Suortti P. Refraction and scattering of X-rays in analyzer-based imaging. J. Synchrotron Radiat. 14, 512–521 (2005).Google Scholar
  27. 27.
    de Vries H.J., Zeegelaar J.E., Middelkoop E., Gijsbers G., Van Marle J., Wildevuur C.H., Westerhof W. Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes. A clinical study. Br. J. Dermatol. 132, 690–697 (1995).CrossRefGoogle Scholar
  28. 28.
    Fernàndez M. X-Ray Scattering and diffraction enhanced imaging of in vitro breast tissues. Report Series in Physics HU-P-D131. University of Helsinki, Yliopistopaino, Finland (2006).Google Scholar
  29. 29.
    Pons Gimier L. Parra J.L. Ciencia cosmética, bases fisiológicas y criterios prácticos, Consejo General de colegios oficiales de farmacèuticos, Madrid (1995).Google Scholar
  30. 30.
    Gniadecka M., Gniadecki R., Serup J., Sondergaard J. Ultrasound structure and digital image analysis of the subepidermal low echogenic band in aged human skin: diurnal changes and interindividual variability. J. Invest. Dermatol. 102, 362–365 (1994).CrossRefGoogle Scholar
  31. 31.
    Waller J.M., Maibach H.I. Age and skin structure and function, a quantitative approach (II): protein, glycosaminoglycan, water, and lipid content and structure. Skin Res. Tech. 12, 145–154 (2006).CrossRefGoogle Scholar
  32. 32.
    Lavker R.M., Zheng P., Dong G. Aged skin: a study by light, transmission electron microscopy, and scanning electron microscopy. J. Invest. Dermatol. 88, 44s–53s (1987).CrossRefGoogle Scholar
  33. 33.
    Vitellaro-Zuccarello L., Garbelli R., Rossi V.D. Immunocytochemical localization of collagen types I, III, IV, and fibronectin in the human dermis. Modifications with ageing. Cell Tissue Res. 268(3), 505–511 (1992).CrossRefGoogle Scholar
  34. 34.
    Fernàndez M., Keyriläinen J., Serimaa R., Torkkeli M., Karjalainen-Lindsberg M.L., Leidenius M., von Smitten K., Tenhunen M., Fiedler S., Bravin A., Weiss T.M., Suortti P. Human breast cancer in vitro: matching histo-pathology with small-angle x-ray scattering and diffraction enhanced x-ray imaging. Phys. Med. Biol. 50(13), 2991–3006 (2005).CrossRefGoogle Scholar
  35. 35.
    Bouwstra J.A., Gooris G.S., Cheng K., Weerheim A., Bras W., Ponec M. Phase behavior of isolated skin lipids. J. Lipid. Res., 37, 999–1011 (1996).Google Scholar
  36. 36.
    Läpez O., Cäcera M., de la Maza A., Costa M., Texeira C.V., Barbosa-Barros L., Parra J.L., Fernández M., Sabés M. Analysis of skin collagen using synchrotron X-ray radiation, J. Invest. Dermatol. 127(2), s58 (2007).Google Scholar
  37. 37.
    Mérigoux C., Durand D., Doucet J., Eugéne M., Diat O. Supramolecular organisation of collagen fibrils in human tissues. Newsletter 18–19 (1997).Google Scholar
  38. 38.
    Viennet C., Bride J., Armbruster V., Aubin F., Gabiot A.C., Gharbi T., Humbert P. Contractile forces generated by striae distensae fibroblasts embedded in collagen lattices. Arch Dermatol. Res. 297(1):10–17 (2005).CrossRefGoogle Scholar
  39. 39.
    Nestle F.O., Kerl H. Melanoma 1789–1815: Dermatology Vol. II. J.L. Bolognia, J.L. Jorizzo, R.P. Rapini (Eds.), Mosby (2003).Google Scholar
  40. 40.
    Falzon G., Pearson S., Murison R., et al. Wavelet-based feature extraction applied to small-angle x-ray scattering patterns from breast tissue: a tool for differentiating between tissue types. Phys. Med. Biol. 51(10), 2465–2477 (2006).CrossRefGoogle Scholar
  41. 41.
    Ooi G.J., Fox J., Siu K., et al. Fourier transform infrared imaging and small angle x-ray scattering as a combined biomolecular approach to diagnosis of breast cancer. Med. Phys. 35(5), 2151–2161 (2008).CrossRefGoogle Scholar
  42. 42.
    Sidhu S., Siu K.K.W., Falzon G. et al. X-ray scattering for classifying tissue types associated with breast disease. Med. Phys. 35(10), 4660–4670 (2008).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Costa
    • 1
    Email author
  • N. Benseny-Cases
    • 1
  • M. Cócera
    • 1
  • C.V. Teixeira
    • 1
  • M. Alsina
    • 2
  • J. Cladera
    • 1
  • O. López
    • 3
  • M. Fernández
    • 4
  • M. Sabés
    • 1
  1. 1.Centre d,Estudis en Biofísica/Unitat de Biofísica. Dept. Bioquímica i Biología MolecularUniversitat Autónoma de BarcelonaSpain
  2. 2.Servei de DermatologíaHospital Clínic de BarcelonaSpain
  3. 3.IIQAB-CSICBarcelonaSpain
  4. 4.INSERM, Unit 836-6/UJF/CHU; ESRF38034-GrenobleFrance

Personalised recommendations