Simultaneous Calorimetric, Dielectric, and SAXS/WAXS Experiments During Polymer Crystallization

  • A. WurmEmail author
  • A.A. Minakov
  • C. Schick
Part of the Lecture Notes in Physics book series (LNP, volume 776)


As extensively described in Chaps. 5 and 7, high-intensity synchrotron radiation offers the possibility to perform simultaneously and in real time small, medium, and wide angle X-ray scattering (SAXS, MAXS, and WAXS, nobreak respectively). In order to understand a broad range of physical phenomena like, for example nucleation, crystallization, and other phase transitions in polymers, polymer-based nobreak composites, or in liquid crystals simultaneous experiments with a nobreak combination of different methods are useful. Due to different sample geometry and thermal nobreak conditions, it is usually difficult to compare the results of different individual experiments. As an important supplement to the classical techniques for studying crystallization like SAXS, WAXS, or differential scanning calorimetry, measurements which test molecular mobility like dielectric or mechanical spectroscopy are of interest during isothermal and non-isothermal crystallization. From such simultaneous experiments, we can learn about the existence of pre-ordered structures before formation of crystals, as detected by DSC or X-ray scattering. In this chapter, we present the development of a device for simultaneous measurements of electrical properties and SAXS/WAXS intensities, which was extended to a microcalorimeter and allows measuring thermal properties like heat capacity and thermal conductivity additionally at the same time and at the same sample volume.


Heat Capacity Dielectric Permittivity Isothermal Crystallization Electrode Polarization Copper Block 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Reiter G., Strobl G. Progress in Understanding of Polymer Crystallization. Springer-Verlag Mulhouse, Freiburg, (2006).Google Scholar
  2. 2.
    Lauritzen Jr J.I., Hoffmann J.D. Formation of Polymer Crystals with Folded Chains from Dilute Solution. Natl. Bur. Stand. 31, 1680–1681 (1959).Google Scholar
  3. 3.
    Sadler D.M. Polymer 24(11), 1401 (1983).CrossRefGoogle Scholar
  4. 4.
    Gedde U.W. Polymer Physics. Chapman and Hall, London, Glasgow, Weinheim, New York, Tokyo, Melbourne, Madras (1995).Google Scholar
  5. 5.
    Acierno S., Grizzuti N., Winter H.H. Macromolecules, 35(13), 5043 (2002).CrossRefADSGoogle Scholar
  6. 6.
    Samon J.M., Schultz J.M., Hsiao B.S. Polymer, 43(6), 1873 (2002).CrossRefGoogle Scholar
  7. 7.
    Wang Z.G., Hsiao B.S., Sirota E.B., Agarwal P., Srinivas S. Macromolecules 33(3), 978 (2000).CrossRefADSGoogle Scholar
  8. 8.
    Albrecht T., Strobl G. Macromolecules 29(2), 783 (1996).CrossRefADSGoogle Scholar
  9. 9.
    Paternostre L., Damman P., Dosiere M. Polymer 39(19), 4579 (1998).CrossRefGoogle Scholar
  10. 10.
    Olmsted P.D., Poon W.C.K., McLeish T.C.B., Terrill N.J., Ryan A.J. Phys. Rev. Lett. 81(2), 373 (1998).CrossRefADSGoogle Scholar
  11. 11.
    Kaji K., Nishida K., Kanaya T., Matsuba G., Konishi T., Imai M. Adv. Polym. Sci. 191, 187 (2005).CrossRefGoogle Scholar
  12. 12.
    Imai M., Kaji K. Polymer 47, 5544 (2006).CrossRefGoogle Scholar
  13. 13.
    Imai M., Kaji K., Kanaya T., Sakai Y. Phys. Rev. B. Condens. Matter. Mater. Phys. 52(17), 12696 (1995).ADSCrossRefGoogle Scholar
  14. 14.
    Wang H. Polymer 47, 4897 (2006).CrossRefGoogle Scholar
  15. 15.
    Muthukumar M., Welch P. Polymer 41(25), 8833 (2000).CrossRefGoogle Scholar
  16. 16.
    Muthukumar M. Adv. Polym. Sci. 191, 241 (2005).CrossRefGoogle Scholar
  17. 17.
    Meyer H., Müller-Plathe F. Macromolecules 35(4), 1241 (2002).CrossRefADSGoogle Scholar
  18. 18.
    Strobl G. Eur. Phys. J. E 3(2), 165 (2000).CrossRefGoogle Scholar
  19. 19.
    Strobl G. Prog. Polym. Sci. 31, 398 (2006).CrossRefGoogle Scholar
  20. 20.
    Hu W., Frenkel D., Mathot V.B.F. Macromolecules 36(21), 8178 (2003).CrossRefADSGoogle Scholar
  21. 21.
    Heck B., Hugel T., Iijima M., Sadiku E., Strobl G. Polymer 41(25), 8839 (2000).CrossRefGoogle Scholar
  22. 22.
    Heck B., Kawai T., Strobl G. Polymer 47, 5538 (2006).CrossRefGoogle Scholar
  23. 23.
    Kohn P., Strobl G. Macromol. im Druck 37, 6823 (2004).CrossRefADSGoogle Scholar
  24. 24.
    Wurm A., Schick C. e-Polymers 24, 1 (2002).Google Scholar
  25. 25.
    Schultz J.M., Hsiao B.S., Samon J.M. Polymer 41(25), 8887 (2000).CrossRefGoogle Scholar
  26. 26.
    Heeley E.L., Maidens A.A., Olmsted P.D., Bras W., Dolbnya I.P., Fairclough J.P.A., Terrill N.J., Ryan A.J. Macromolecules 36(10), 3656 (2003).CrossRefADSGoogle Scholar
  27. 27.
    Ryan A.J. Faraday Discuss 128, 421 (2005).CrossRefADSGoogle Scholar
  28. 28.
    Matsuba G., Kaji K., Kanaya T., Nishida K. Phys. Rev. E 65(6), 061801.Google Scholar
  29. 29.
    Hobbs J.K., Miles M.J. Macromolecules 34(3), 353 (2001).CrossRefADSGoogle Scholar
  30. 30.
    Hobbs J.K. Polymer 47, 5566 (2006).CrossRefGoogle Scholar
  31. 31.
    Schick C., Wurm A., Mohammed A. Vitrication and Devitrication of the Rigid Amorphous Fraction in Semicrystalline Polymers Revealed from Frequency Dependent Heat Capacity. Springer-Verlag, Berlin, Heidelberg, New York, Barcelona, HongKong, London, Milan, Paris, Singapore, Tokyo, (2003).Google Scholar
  32. 32.
    Nogales A., Ezquerra T.A., Denchev Z., Balta-Calleja F.J. Polymer 42(13), 5711 (2001).CrossRefGoogle Scholar
  33. 33.
    Ezquerra T.A., Løpez-Cabarcos E., Hsiao B.S., Balta-Calleja F.J. Phys. Rev. E 54(1), 989 (1996).CrossRefADSGoogle Scholar
  34. 34.
    Ezquerra T.A., Balta-Calleja F.J., Zachmann H.G. Polymer 35(12), 2600 (1994).CrossRefGoogle Scholar
  35. 35.
    Ezquerra T.A., Majszczyk J., Balta-Calleja J.F., Løpez-Cabarcos E., Gardner H.K., Hsiao S.B. Phys. Rev. B 50(9), 6023 (1994).CrossRefADSGoogle Scholar
  36. 36.
    Sics I., Ezquerra T.A., Nogales A., Denchev Z., Alvarez C., Funari S.S. Polymer 44(4), 1045 (2003).CrossRefGoogle Scholar
  37. 37.
    Sanz A., Nogales A., Ezquerra T.A., Lotti N., Munari A., Funari S.S. Polymer 47, 1281 (2006).CrossRefGoogle Scholar
  38. 38.
    SalmeronSanchez M., Mathot V.B.F., VandenPoel G., GomezRibelles J.L. Macromolecules 40(22), 7989 (2007).CrossRefADSGoogle Scholar
  39. 39.
    Vanden Poel G., Mathot V.B.F. Thermochimica Acta 461(1–2), 107 (2007).CrossRefGoogle Scholar
  40. 40.
    Okamoto N., Oguni M., Sagawa Y. J. Phys.. Condens. Matter. 9(43), 9187 (1997).CrossRefADSGoogle Scholar
  41. 41.
    Dobbertin J., Hannemann J., Schick C., Pötter M., Dehne H. J. Chem. Phys. 108(21), 9062 (1998).ADSGoogle Scholar
  42. 42.
    Schick C., Dobbertin J., Potter M., Dehne H., Hensel A., Wurm A., Ghoneim A.M., Weyer S. J. Therm. Anal. 49(1), 499 (1997).CrossRefGoogle Scholar
  43. 43.
    Mijovic J., Sy J.W. Macromolecules 35(16), 6370 (2002).CrossRefADSGoogle Scholar
  44. 44.
    Fukao K., Miyamoto Y. J. Non-Cryst. Solids 235, 538 (1998).CrossRefADSGoogle Scholar
  45. 45.
    Fukao K., Miyamoto Y. Prog. Theor. Phys. Suppl. 126, 219 (1997).CrossRefADSGoogle Scholar
  46. 46.
    Saad G.R., Mansour A.A., Hamed A.H. Polymer 38(16), 4091 (1997).CrossRefGoogle Scholar
  47. 47.
    Napolitano S., Wubbenhorst M. J. Non-Cryst. Solids 353, 4357 (2007).CrossRefADSGoogle Scholar
  48. 48.
    Laredo E., Grimau M., Muller A., Bello A., Suarez N. J. Polym. Sci. Part B. Polym. Phys. 34(17), 2863 (1996).CrossRefADSGoogle Scholar
  49. 49.
    Wurm A., Soliman R., Schick C. Polymer 44(24), 7467 (2003).CrossRefGoogle Scholar
  50. 50.
    Wurm A., Soliman R., Goossens J.G.P., Bras W., Schick C. J Non-Cryst. Solids 351, 2773 (2005).CrossRefADSGoogle Scholar
  51. 51.
    Minakov A.A., Bugoslavsky Y.V., Schick C. Thermochim. Acta 317(2), 117 (1998).CrossRefGoogle Scholar
  52. 52.
    Minakov A.A., Adamovsky S.A., Schick C. Thermochim. Acta 403(1), 89 (2003).CrossRefGoogle Scholar
  53. 53.
    Gabriel A., Dauvergne F. Nucl. Instr. Meth. 201 (1982).Google Scholar
  54. 54.
    Hammersley A.P. FIT2D: An Introduction and Overview. ESRF Internal Report 1997:ESRF97HA02T.Google Scholar
  55. 55.
    Hammersley A.P., Svensson S.O., Hanfland M., Fitch A.N., Häusermann D. High Press. Res. 14, 235 (1996).CrossRefADSGoogle Scholar
  56. 56.
    Schick C., Wurm A., Mohammed A. Colloid Polym. Sci. 279, 800 (2001).CrossRefGoogle Scholar
  57. 57.
    Mathot V.B.F. Calorimetry and Thermal Analysis of Polymers. Hanser Publishers, München (1994).Google Scholar
  58. 58.
    Wunderlich B. The athas database on heat capacities of polymers see on WWW URL:; Pure. Appl. Chem. 67(6), 1019 (1995).Google Scholar
  59. 59.
    Schick C., Merzlyakov M., Minakov A., Wurm A. J. Therm. Anal. Calorim. 59, 279 (2000).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.University of Rostock Inst. of Physics, Universitätsplatz 318051 RostockGermany

Personalised recommendations