Skip to main content

A Definition of Cellular Interface Problems

  • Conference paper
  • 521 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 5391)

Abstract

We define a class of cellular interface problems (short: CIP) that mathematically model the exchange of molecules in a compartmentalised living cell. Defining and eventually solving such compartmental problems is important for several reasons. They are needed to understand the organisation of life itself, for example by exploring different ’origin of life’ hypothesis based on simple metabolic pathways and their necessary division into one or more compartments. In more complex forms investigating cellular interface problems is a way to understand cellular homeostasis of different types, for example ionic fluxes and their composition between all different cellular compartments. Understanding homeostasis and its collapse is important for many physiological medical applications. This class of models is also necessary to formulate efficiently and in detail complex signalling processes taking place in different cell types, with eukaryotic cells the most complex ones in terms of sophisticated compartmentalisation. We will compare such mathematical models of signalling pathways with rule-based models as formulated in membrane computing in a final discussion. The latter is a theory that investigates computer programmes with the help of biological concepts, like a subroutine exchanging data with the environment, in this case a programme with its global variables.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguda, B.D., Clarke, B.L.: Bistability in chemical reaction networks: theory and application to the peroxidase-oxidase reaction. J. Chem. Phys. 87, 3461–3470 (1987)

    Article  Google Scholar 

  2. Babuška, I., Banerjee, U., Osborn, J.E.: Meshless and generalized finite element methods: a survey of some major results. In: [26], p. 120. Springer, Berlin (2003)

    Google Scholar 

  3. Babuška, I., Melenk, J.M.: The partition of unity method. Internat. J. Numer. Methods Engrg. 40(4), 727–758 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., Crysl, P.: Meshless methods: An overview and recent developments. Computational Methods in Applied Mechanical Engineering 139, 3–47 (1996)

    Article  MATH  Google Scholar 

  5. Bronnikova, T.V., Fed’kina, V.R., Schaffer, W.M., Olsen, L.F.: Period-doubling bifurcations in a detailed model of the peroxidase-oxidase reaction. J. Phys. Chem. 99, 9309–9312 (1995)

    Article  Google Scholar 

  6. Clarke, B.L.: Stability of complex reaction networks. In: Prigogine, I., Rice, S. (eds.) Advan. Chem. Phys., vol. 43, pp. 1–216. Wiley, New York (1980)

    Chapter  Google Scholar 

  7. Clarke, B.L., Jiang, W.: Method for deriving Hopf and saddle-node bifurcation hypersurfaces and application to a model of the Belousov-Zhabotinskii reaction. J. Chem. Phys. 99, 4464–4476 (1993)

    Article  Google Scholar 

  8. Cornish-Bowden, A., Hofmeyer, J.-H.S.: The role of stoichiometric analysis in studies of metabolism: an example. J. Theor. Biol. 216, 179–191 (2002)

    Article  MathSciNet  Google Scholar 

  9. Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. PNAS 30(103), 8697–8702 (2006)

    Article  MATH  Google Scholar 

  10. Domijan, M., Kirkilionis, M.: Graph Theory and Qualitative Analysis of Reaction Networks. Networks and Heterogeneous Media 3, 95–322 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Domijan, M., Kirkilionis, M.: Bistability and Oscillations in Chemical Reaction Systems. Journal of Mathematical Biology (in press, 2008)

    Google Scholar 

  12. Eigel, M., George, E., Kirkilionis, M.: A Meshfree Partition of Unity Method for Diffusion Equations on Complex Domains. IMA Journal of Numerical Analysis (in press, 2008)

    Google Scholar 

  13. Eigel, M., Erwin, G., Kirkilionis, M.: The Partition of Unity Meshfree Method for Solving Transport-Reaction Equations on Complex Domains: Implementation and Applications in the Life Sciences. In: Griebel, M., Schweitzer, A. (eds.) Meshfree Methods for Partial Differential Equations IV. Lecture Notes in Computational Science and Engineering, vol. 65. Springer, Heidelberg (2009)

    Google Scholar 

  14. Eigel, M.: An adaptive mashfree method for reaction-diffusion processes on complex and nested domains. PhD thesis, University of Warwick (2008)

    Google Scholar 

  15. Field, R.J., Körös, E., Noyes, R.M.: Oscillations in chemical systems. 2. Thorough analysis of temporal oscillation in bromate-cerium-malonic acid system. J. Am. Chem. Soc. 94(25), 8649–8664 (1972)

    Article  Google Scholar 

  16. Ferry, J.G., House, C.H.: The Stepwise Evolution of Early life Driven by Energy Conservation. Molecular Biology and Evolution 23(6), 1286–1292 (2006)

    Article  Google Scholar 

  17. Field, R.J., Noyes, R.M.: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)

    Article  Google Scholar 

  18. Goldbeter, A., Dupont, G.: Allosteric regulation, cooperativity, and biochemical oscillations. Biophys. Chem. 37, 341–353 (1990)

    Article  Google Scholar 

  19. Guckenheimer, J., Holmes, J.P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Applied Mathematics Sciences, vol. 42. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  20. Heinrich, R., Schuster, S.: The Regulation of Cellular Processes. Chapman & Hall, Boca Raton (1996)

    Book  MATH  Google Scholar 

  21. Hunt, K.L.C., Hunt, P.M., Ross, J.: Nonlinear Dynamics and Thermodynamics of Chemical Reactions Far From Equilibrium. Annu. Rev. Phys. Chem. 41, 409–439 (1990)

    Article  Google Scholar 

  22. Ivanova, A.N.: Conditions for uniqueness of stationary state of kinetic systems, related, to structural scheme of reactions. Kinet. Katal. 20(4), 1019–1023 (1979)

    Google Scholar 

  23. Keener, J., Sneyd, J.: Mathematical Physiology. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  24. Kirkilionis, M., et al. (eds.): Trends in Nonlinear Analysis. Springer, Heidelberg (2003)

    Google Scholar 

  25. Kirkilionis, M.: Reaction systems, graph theory and dynamical networks. In: Gauges, R., et al. (eds.) 5th Workshop on Computation of Biochemical Pathways and Genetic Networks, pp. 131–150. Logos-Verlag (2008)

    Google Scholar 

  26. Kirkilionis, M., Sbano, L.: An Averaging Principle for Combined Interaction Graphs. Part I: Connectivity and Applications to Genetic Switches. In: Advances in Complex Systems (2008); in revision. Also available as WMI Preprint 5/2008

    Google Scholar 

  27. Klonowski, W.: Simplifying principles for chemical and enzyme reaction kinetics. Biophys. Chem. 18, 73–87 (1983)

    Article  Google Scholar 

  28. Krischer, K., Eiswirth, M., Ertl, G.: Oscillatory CO oxidation on Pt(110): Modeling of temporal self-organisation. J. Chem. Phys. 96, 9161–9172 (1992)

    Article  Google Scholar 

  29. Kuznetsov, Y.: Elements of Applied Bifurcation Theory, 2nd edn. Applied Mathematical Sciences, p. 112. Springer, Heidelberg (1998)

    Google Scholar 

  30. Melenk, J.M., Babuška, I.: The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Engrg. 139(1-4), 289–314 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Misteli, T., Gunjan, A., Hock, R., Bustink, M., David, T.: Dynamic binding of histone H1 to chromatin in living cells. Nature 408, 877–881 (2000)

    Article  Google Scholar 

  32. Paun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

    Book  MATH  Google Scholar 

  33. Ratto, G.M., Pizzorusso, T.: A kinase with a vision: Role of ERK in the synaptic plasticity of the visual cortex. Adv. Exp. Med. Biol. 557, 122–132 (2006)

    Article  Google Scholar 

  34. Pavliotis, G.A., Stuart, A.M.: An Introduction to Multiscale Methods. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  35. Perelson, A.S., Wallwork, D.: The arbitrary dynamic behavior of open chemical reaction systems. J. Chem. Phys. 66, 4390–4394 (1977)

    Article  Google Scholar 

  36. Sbano, L., Kirkilionis, M.: Molecular Reactions Described as Infinite and Finite State Systems. Part I: Continuum Approximation. Warwick Preprint 05/2007

    Google Scholar 

  37. Sbano, L., Kirkilionis, M.: Molecular Reactions Described as Infinite and Finite State Systems Part Ii: Deterministic Dynamics and Examples. Warwick Preprint 07/2007

    Google Scholar 

  38. Sbano, L., Kirkilionis, M.: Multiscale Analysis of Reaction Networks. Theory in Biosciences 127, 107–123 (2008)

    Article  Google Scholar 

  39. Schweitzer, M.A.: Efficient implementation and parallelization of meshfree and particle methods—the parallel multilevel partition of unity method, pp. 195–262. Springer, Berlin (2005)

    MATH  Google Scholar 

  40. Siegel, I.H.: Enzyme Kinetics. Wiley, Chichester (1975)

    Google Scholar 

  41. Selkov, E.E.: Self-oscillations in glycolysis. 1. A simple kinetic model. Eur. J. Biochem. 4, 79–86 (1968)

    Article  Google Scholar 

  42. Slepchenko, B.M., Terasaki, M.: Cyclin aggregation and robustness of bio-switching. Mol. Biol. Cell. 14, 4695–4706 (2003)

    Article  Google Scholar 

  43. Tyson, J.J., Chen, K., Novak, B.: Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2, 908–916 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kirkilionis, M., Domijan, M., Eigel, M., George, E., Li, M., Sbano, L. (2009). A Definition of Cellular Interface Problems. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2008. Lecture Notes in Computer Science, vol 5391. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95885-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95885-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95884-0

  • Online ISBN: 978-3-540-95885-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics