Skip to main content

Visual Analysis in Archaeology. An Artificial Intelligence Approach

  • Chapter
  • First Online:
Morphometrics for Nonmorphometricians

Part of the book series: Lecture Notes in Earth Sciences ((LNEARTH,volume 124))

Abstract

Archaeology is a quintessentially “visual” discipline, because visual perception makes us aware of fundamental properties of objects and allows us to discover how objects were produced and used in the past. The approach I adopt here is to follow current computational theories of visual perception to ameliorate to way archaeology can deal with the analysis and explanation of the most usual visual marks: shape and texture. In any case, I am not interested in the mere mechanical procedure of extracting shape information among visual input, but in explaining why archaeological evidences have the shape they have.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, F.R., 1979, A goal-state theory of function attributions, Canadian Journal of Philosophy, 9: 493–518.

    Google Scholar 

  • Adams, D.C.F., Rohlf, J., Slice, D.E., 2004, Geometric morphometrics: Ten years of progress following the ‘revolution’. Italian Journal of Zoology, 71: 5–16.

    Article  Google Scholar 

  • Adán, M., Barcelo, J.A., Pijoan-Lopez, J.A., Pique, R., Toselli, A., 2003, Spatial Statistics in Archaeological Texture Analysis. In The Digital Heritage of Archaeology. Edited by M. Doerr and A. Sarris. Published by the Archive of Monuments and Publications. Hellenic Ministry of Culture. Athens, Greece.

    Google Scholar 

  • Andrefsky, W., 2005, Lithics: Macroscopic Approaches to Analysis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Andrefsky, W., 2006, Experimental and archaeological verification of an index of retouch for hafted bifaces. American Antiquity, 71(4): 743–757.

    Article  Google Scholar 

  • Arlinghaus, S., 1994, Practical Handbook of Curve Fitting. London, CRC Press.

    Google Scholar 

  • Avern, G. (2010, in press). “Shortcomings of Current 3D Data Acquisition Technologies for Graphical Recording of Archaeological Excavations.” Computer Applications and Quantitative Methods in Archaeology. Proceedings of the 32nd Conference, Prato, Italy, April 2004.

    Google Scholar 

  • Barceló, J.A., 2000, Visualizing what might be. An Introduction to Virtual Reality in Archaeology. In Virtual Reality in Archaeology. Edited by J.A. Barcelo, M. Forte and d. Sanders. ArcheoPress, Oxford. British Archaeological Reports (S843), pp. 9–36. (http://prehistoria.uab.cat/Barcelo/publication/VR2000.pdf).

  • Barceló, J.A., 2001, Virtual reality and scientific visualization. working with models and hypothesis international. Journal of Modern Physics C, 12(4): 569–580.

    Article  Google Scholar 

  • Barceló, J.A., 2002, Virtual Archaeology and Artificial Intelligence. In Virtual Archaeology. Edited by F. Nicolucci. ArchaeoPress, Oxford. BAR International Series S1075, pp. 21–28. (http://prehistoria.uab.cat/Barcelo/publication/VAST_021.pdf).

  • Barceló, J.A., 2005, A Science Fiction Tale? A robot called archaeologist. In The World is in your Eyes. Proceedings of the XXXIII Computer Applications and Quantitative Methods in Archaeology Conference. Edited by A. Figueiredo and G. Velho. Tomar, Portugal, pp. 221–230. Associaçâo para o Desenvolvimento das Aplicaçôes Informáticas e Novas Tecnologias em Arqueologia. ( http://prehistoria.uab.cat/Barcelo/publication/SciFiTomar.pdf).

  • Barceló, J.A., 2007, Automatic Archaeology: Bridging the gap between Virtual Reality, Artificial Intelligence, and Archaeology. In Theorizing Digital Cultural Heritage. A critical Discourse. Edited by F. Cameron and S. Kenderdine. The MIT Press, Cambridge, MA, pp. 437–456.

    Google Scholar 

  • Barceló, J.A., 2008, Computational Intelligence in Archaeology. Henshey (NY). Information Science Reference (the IGI Group.Inc.).

    Google Scholar 

  • Barceló, J.A. Pijoan-Lopez, J., 2004, Cutting or Scrapping? Using neural Networks to Distinguish Kinematics in Use Wear Analysis In Enter the Past. The E-way into the Four Dimensions of Culture Heritage . Edited by Magistrat der Stadt Wien. ArcheoPress, Oxford, BAR International Series 1227, pp. 427–431. (http://prehistoria.uab.cat/Barcelo/publication/CuttingScrapping.pdf).

  • Barceló, J.A., De Castro, O., Travet, D., Vicente, O., 2003, A 3d Model of an Archaeological Excavation. In The Digital Heritage of Archaeology. Computer Applications and Quantitative methods in Archaeology. Edited by M. Doerr and A. Sarris. Hellenic Ministry of Culture. Archive of Monuments and Publications. (http://prehistoria.uab.cat/Barcelo/publication/3Dmodel.pdf).

  • Barceló, J.A, Mameli, L., Maximiano, A., Vicente, O., 2009, New computational and mathematical methods for archaeological fieldwork at the extreme south of the populated World. Arctic Anthropology, 46 (2):.

    Google Scholar 

  • Barceló, J.A., Pijoan, J., Vicente, O., 2001, Image Quantification as Archaeological Description. In Computing Archaeology for Understanding the Past. Edited by Z. Stancic and T. Veljanovski. BAR International Series S931, pp. 69–78. (http://prehistoria.uab.cat/Barcelo/publication/CAA2000.pdf).

  • Bardossy, A., Schmidt, F., 2002, GIS approach to scale issues of perimeter-based shape indices for drainage basins. Hydrological Sciences-Journal-des Sciences Hydrologiques, 47(6): 931–942.

    Article  Google Scholar 

  • Bebis, G., Papadourakis, G., Orphanoudakis, S., 1998, Recognition Using Curvature Scale Space and Artificial Neural Networks. In Proceedings of the IASTED International Conference Signal and Image Processing October 27–31, 1998, Las Vegas, NV.

    Google Scholar 

  • Beck, B.B. 1980, Animal Tool Behavior: The Use and Manufacture of Tools. New York, Garland Press.

    Google Scholar 

  • Bello, S., Soligo, C., 2008, A new method for the quantitative analysis of cutmark micromorphology. Journal of Archaeological Science 35, pp. 1542–1552.

    Article  Google Scholar 

  • Belongie, S., Malik, J., Puzicha, J., 2002, Shape matching and object recognition using shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(24): 509–522.

    Google Scholar 

  • Bernardini, F., Rushmeier, H., 2002, The 3D model acquisition pipeline. Computer Graphics Forum, 21(2): 149–172.

    Article  Google Scholar 

  • Bertolotto, M., Bruzzone, E., De Floriani, L., 1997, Geometric Modelling and Spatial Reasoning. In Artificial Vision. Image Description, Recognition and Communication. Edited by V. Cantoni, S. Levialdi and V. Roberto, New York, Academic Press, pp. 107–134.

    Google Scholar 

  • Bicici, E., St. Amant, R., 2003, Reasoning about the Functionality of Tools and Physical Artifacts. Technical Report TR-2003-22, Department of Computer Science, North Carolina State University, April, 2003.

    Google Scholar 

  • Biederman, I., 1987. Recognition-by-components: A theory of human image understanding. Psychological Review, 94(2): 115–147.

    Article  Google Scholar 

  • Biederman, I., 1995, Visual Object Recognition. In An Invitation to Cognitive Science, 2nd edition, Volume 2., Visual Cognition. Edited by S.F. Kosslyn and D.N. Osherson. Chapter 4, MIT Press, Cambridge, MA, pp. 121–165.

    Google Scholar 

  • Binford, T.O., Levitt, T.S., 2003, Evidential reasoning for object recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(7): 837–851.

    Article  Google Scholar 

  • Bird, C., Minichillo, T., Marean, C.W., 2007, Edge damage distribution at the assemblage level on middle stone age lithics: An image-based GIS approach. Journal of Archaeological Science 34(5): 771–780.

    Article  Google Scholar 

  • Bishop, G., Cha, S., Tappert, C.C., 2005, Identification of Pottery Shapes and Schools Using Image Retrieval Techniques. Proceedings of MCSCE, CISST, Las Vegas, NV, (http://csis.pace.edu/˜ctappert/srd2005/c2.pdf). Downloaded on April 2009.

  • Bisson, M.S., 2000, Nineteenth century tools for twenty first century archaeology? Why the Middle Paleolithic typology of François Bordes must be replaced. Journal of Archaeological Method and Theory, 7: 1–48.

    Article  Google Scholar 

  • Blum, H., 1973, Biological shape and visual science. Journal of Theoretical Biology, 38: 205–287.

    Article  Google Scholar 

  • Bookstein, F.L., 1991, Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Boon, P.J., Pont, S.G., van Oortmerssen, M., 2008, Acquisition and Visualization of Cross Section Surface Characteristics for Identification of Archaeological Ceramics. In Layers of Perception. Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). Berlin, Germany, April 2–6, 2007. Edited by A. Posluschny, K. Lambers and I. Herzog, Kolloquien zur Vor- und Frühgeschichte, Vol. 10. Bonn Dr. Rudolf Habelt GmbH.

    Google Scholar 

  • Boorse, C., 1976, Wright on functions. Philosphical Review, 85: 70–86.

    Article  Google Scholar 

  • Boorse, C., 2002, A Rebuttal on Functions. In Functions. New Essays in the Philosophy of Psychology and Biology. Edited by A. Ariew, R. Cummins and M. Perlman. Oxford University Press, Oxford.

    Google Scholar 

  • Boss, M.A., Meister, M., Rietzel, D., 2009, Inside Greek vases-On Estimating the Skill of Ancient Greek Craftsmen Producing Complex 3D Shapes Using Current Technologies. In Making History Interactive. Proceedings of the 37th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). Williamsburg, VA, March 22–26, 2009. Edited by B. Frischer and L. Fisher. (in press).

    Google Scholar 

  • Brown, C.T., 2001, The fractal dimensions of lithic reduction, Journal of Archaeological Science, 28: 619–31.

    Google Scholar 

  • Brown, C.T., Witschey, W.R.T., 2003a, Fractal Fragmentation of Archaeological Ceramics. Fractals in Archaeology Symposium, Society of American Archaeology, Milwaukee, WI.

    Google Scholar 

  • Brown, C.T., Witschey, W.R.T., 2003b, The fractal geometry of ancient Maya settlement. Journal of Archaeological Science, 30: 1619–1632.

    Article  Google Scholar 

  • Brown, C., Witschey, W., Liebovitch, L., 2005, The broken past: Fractals in archaeology. Journal of Archaeological Method and Theory, 12(1): 37–78.

    Article  Google Scholar 

  • Caldoni, M.-I., Chimienti, A., Nerino, R., 2006, Automatic Coarse Registration by Invariant Features. In The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage. VAST2006. Edited by M. Ioannidis, D. Arnold, F. Nicolucci and K. Mania. Budapest, Archeolingua.

    Google Scholar 

  • Carbonetto, P., de Freitas, N., Barnard, K., 2004, A Statistical Model for General Contextual Object Recognition In 8th European Conference on Computer Vision, Prague, Czech Republic, May 11–14. Proceedings, Part I. Edited by T. Pajdla and J. Matas. Springer Lecture Notes in Computer Science, Vol. 3021.

    Google Scholar 

  • Cardillo, M., 2005, Explorando la variación en las morfologías líticas a partir de la técnicas de análisis de contornos. El caso de las puntas de proyectil del holoceno medio-tardío de la Puna de Salta (San Antonio de los Cobres, Argentina). Revista Werken N°7. 77–88.

    Google Scholar 

  • Cardillo, M., 2006, Temporal Trends in the Morphometric Variation of the Lithic Projectile Points During The Middle Holocene Of Southern Andes (Puna Region). A Coevolutionary Approach. In 15th Congress Of International Union For Prehistoric And Protohistoric Sciences. Workshop 22: Theoretical And Methodological Issues In Evolutionary Archaeology: Toward An Unified Darwinian Paradigm. Lisbon, Portugal, 4–9 September 2006.

    Google Scholar 

  • Cardillo, M., Charlin, J., 2007, Tendencias observadas en la variabilidad de los raspadores de norte y sur de Patagonia. Explorando las interrelaciones entre forma, tamaño e historia de vida. 2do Congreso Argentino y 1er Congreso Latinoamericano de Arqueometría. Buenos Aires.

    Google Scholar 

  • Casali, F., 2006, X-Ray and Neutron Digital radiography and Computed Tomography for Cultural heritage. In Physical Techniques in the Study of Art, Archaeology and Cultural Heritage. Edited by D. Bradley and D.C. Creagh. Vol. 1, Elsevier Science & Technology, Amsterdam, pp. 41–123.

    Google Scholar 

  • Castillo Tejero, N., Litvak, J., 1968, Un Sistema de Estudio Para Formas de Vasijas. Technologia 2. Departamento de Prehistoria, Instituto Nacional de Antropologia e Historia, Mexico City.

    Google Scholar 

  • Chaigneau, S.E., Barsalou, L.W. Sloman, A., 2004, Assessing the causal structure of function. Journal of Experimental Psychology: General , 133(4): 601–625.

    Article  Google Scholar 

  • Christenson, A.L., 1986, Projectile point size and projectile aerodynamics: An exploratory study. Plains Archaeologist, 31: 109–128.

    Google Scholar 

  • Cignoni, P., Callieri, M., Scopigno, R., Gori, G., Risaliti, M., 2006, Beyond manual drafting: A restoration-oriented system. Journal of Cultural Heritage, 3(7): 1–12.

    Google Scholar 

  • Clarkson, C., 2002, An index of invasiveness for the measurement of uni-facial and bifacial retouch: A theoretical, experimental and archaeological verification. Journal of Archaeological Science, 29: 65–75.

    Article  Google Scholar 

  • Collins, S., 2008, Experimental investigations into edge performance and its implications for stone artefact reduction modeling. Journal of Archaeological Science, 35: 2164–2170.

    Article  Google Scholar 

  • Cooper, D.B., Willis, A., Andrews, S., Baker, J., Cao, Y., Han, D., Kang, K., Kong, W., Leymarie, F.F., Orriols, X., Velipasalar, S., Vote, E.L., Joukowsky, M.S., Kimia, B.B., Laidlaw, D.H., Mumford, D., 2002, Bayesian pot-assembly from fragments as problems in perceptual-grouping and geometric-learning. Proceedings of the 16th International Conference on Pattern Recognition, 3: 30927–30931.

    Google Scholar 

  • Costa, L.d.F., Cesar, R.M., Jr., 2001, Shape Analysis and Classification. Theory and Practice. CRC Press, London.

    Google Scholar 

  • Cotterell, B., Kaminga, J.,, 1992, Mechanics of Pre-industrial Technology : An Introduction to the Mechanics of Ancient and Traditional Material Culture. Cambridge University Press, Cambridge.

    Google Scholar 

  • Crompton, S.Y., 1995, The third measure: 3-D data, data capture systems and accuracy. Archaeological Computing Newsletter, 44: 5–11.

    Google Scholar 

  • Crompton, S., 2007, 3D Lithics. In Layers of Perception. Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). Berlin, Germany, April 2–6, 2007. Edited by A. Posluschny, K. Lambers and I. Herzog. Kolloquien zur Vor- und Frühgeschichte, Vol. 10. Bonn Dr. Rudolf Habelt GmbH.

    Google Scholar 

  • Cummins, R., 1975, Functional analysis. Journal of Philosophy, 72/20: 741–765.

    Article  Google Scholar 

  • Cummins, R., 2000, How does it work? vs. What are the laws? Two conceptions of psychological explanation. In Explanation and Cognition. Edited by F. Keil and R. Wilson. The MIT Press, Cambridge, MA, pp. 117–145.

    Google Scholar 

  • Cummins, R., 2002, Neo-Teleology. In Functions. New Essays in the Philosophy of Psychology and Biology. Edited by A. Ariew, R. Cummins and M. Perlman. Oxford University Press, New York.

    Google Scholar 

  • DeBoer, W.R., 1980, Vessel shape from rim sherds: An experiment on the effect of the individual illustrator. Journal of Field Archaeology, 7: 131–135.

    Google Scholar 

  • De Napoli, L., Luchi, M.L., Muzzupappa, M., Rizzati. S., 2001, A Semi-Automatic Procedure for the Recognition and Classification of Pieces of Archaeological Artefacts, In 12th Adm International Conference, September 5–7, Rimini, Italy, 2001.

    Google Scholar 

  • De Ridder, J., 2003, Functional Explanation for Technical Artifacts, 6th Inland Northwest Philosophy Conference, May 2–4, 2003, Moscow, ID/Pullman, WA.

    Google Scholar 

  • Dibble, H.L., Chase, P.H., 1981, A new method for describing and analyzing artifact shape. American Antiquity, 46: 178–197.

    Article  Google Scholar 

  • Dibble, H.L., 1997, Platform variability and flake morphology: A comparison of experimental and archeological data and implications for interpreting prehistoric lithic technological strategies. Lithic Technology, 22: 150–170.

    Google Scholar 

  • Dierckx, P., 1995, Curve and Surface Fitting with Splines. Oxford University Press, Oxford.

    Google Scholar 

  • DiManzo, M., Trucco, E., Giunchiglia, F., Ricci F., 1989, FUR: Understanding functional reasoning. International Journal of Intelligent Systems, 4: 431–457.

    Article  Google Scholar 

  • Dimitrov, L.I., Wenger, E., Šrámek, M., Trinkl, E., Lang-Auinger, M., 2006, VISAGE: An Integrated Environment for Visualization and Study of Archaeological Data Generated by Industrial Computer Tomography. In The E-volution of Information Communication Technology in Cultural Heritage. Where Hi-Tech Touches the Past: Risks and Challenges for the 21st Century. Edited by M. Ioannides, D. Arnold, F. Niccolucci and K. Mania. EPOCH/Archaeolingua. (http://public-repository.epoch-net.org/publications/VAST2006/short0.pdf). Downloaded on April 2009.

  • Djindjian, F., 1993, Les Méthodes en Archéologie.Armand Colin, Paris.

    Google Scholar 

  • Doi, J., Sato, W., 2005, Surface Reconstruction and 3D Shape Processing for Cultural Applications, IVCNZ 2005 - Image and Vision Computing. New Zealand 28 November–29 Novmber 2005 (http://pixel.otago.ac.nz/ipapers/38.pdf). Downloaded on April 2009.

  • Dryden, I.L., Mardia, K.V., 1998, Statistical Shape Analysis.Wiley, Chichestern.

    Google Scholar 

  • Durham, P., Lewis, P.H., Shennan, S.J., 1990, Artefact Matching and Retrieval Using the Generalised Hough Transform. In Proceedings of Computer Applications in Archaeology. pp. 25–30.

    Google Scholar 

  • Edelman, S., 1994, Representation and Recognition in Vision. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Edelman, S, Intrator, N., 2002a, Visual Processing of Object Structure. In The Handbook of Brain Theory and Neural Networks (2nd ed.) Edited by M.A. Arbib, MIT Press, Cambridge, MA.

    Google Scholar 

  • Edelman, S., Intrator, N., 2002b, Towards structural systematicity in distributed, statically bound visual representations. Cognitive Science, 27: 73–110.

    Google Scholar 

  • Ericson, J.E., Stickel, E.G., 1973, A proposed classification system for ceramics. World Archaeology, 4: 357–367.

    Article  Google Scholar 

  • Ericson, J.E., Read, D.W., Burke, C., 1972, Research design: The relationship between the primary functions and the physical properties of ceramic vessels and their implications for ceramic distribution on an archaeological site. Anthropology UCLA, III(2): 84–95.

    Google Scholar 

  • Farjas, M., García Lázaro, F.J., (eds). 2008, Modelización tridimensional y sistemas láser escaner 3D aplicados al patrimonio histórico.Ediciones La Ergástula, Madrid.

    Google Scholar 

  • Fleming, B., 1999, 3d Modeling and Surfacing. Morgan Kaufmann Publishers, Inc., San Francisco.

    Google Scholar 

  • Flenniken, J. Raymond, A., 1986, Morphological projectile point typology: Replication, experimentation and technological analysis. American Antiquity, 51(3): 603–614.

    Article  Google Scholar 

  • Forel, B., Gabillot, M., Monna, F., Forel, S., Dommergues, C.H., Gerber, S., Petit, C., Mordant, C., Chateau, C., 2009, Morphometry of middle bronze age palstaves by discrete cosine transform. Journal of Archaeological Science, 36: 721–729.

    Article  Google Scholar 

  • Forsyth, D.A., Ponce, J., 2003, Computer Vision: A Modern Approach. Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Froimovich, G., Rivlin, E., Shimshoni, I., 2002, Object Classification by Functional Parts. Proceedings of the First Symposium on 3D Data, Processing, Visualization and Transmission, pp. 648–655.

    Google Scholar 

  • Georgopoulos, A., Ioannidis, C., Ioannides, M., 2008, 3D Virtual Reconstructions at the Service of Computer Assisted Archaeological Measurements. In Layers of Perception. Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). Berlin, Germany, April 2–6, 2007. Edited by A. Posluschny, K. Lambers and I. Herzog. Kolloquien zur Vor- und Frühgeschichte, Vol. 10. Bonn Dr. Rudolf Habelt GmbH.

    Google Scholar 

  • Gero, J., Mazullo, A., 1984, Analysis of artifact shape using Fourier series in closed form. Journal of Field Archaeology, 11: 315–322.

    Google Scholar 

  • Ghali, S., 2008, Introduction to Geometric Computing. Springer, London.

    Google Scholar 

  • Gilboa, A., Karasik, A., Sharon, I., Smilansky, U., 2004, Towards computerized typology and classification of ceramics. Journal of Archaeological Science, 31: 681–694.

    Article  Google Scholar 

  • Goel, S., Jain, A., Singh, P., Bagga, S., Batra, S., Gaur, U., 2005, Computer Vision Aided Pottery Classification and Reconstruction, INDO US Science and Technology Forum on Digital Archaeology (http://www.siddharthbatra.info/Data%20Files/CV%20Based%20Class%20&%20Recon%20of%20Pottery.pdf). Downloaded on April 2009.

  • Gonzalez, R.C., Woods, R.E., 2007, Digital Image Processing (3rd Edition) Prentice-Hall, Upper Saddle River, NJ.

    Google Scholar 

  • Grimson, W.L., 1991, Object Recognition by Computer: the Role of Geometric Constraints. MIT Press, Cambridge, MA.

    Google Scholar 

  • Grosman, L., Smikt, O., Smilansky, U., 2008, On the application of 3-D scanning technology for the documentation and typology of lithic artifacts. Journal of Archaeological Science, 35: 3101–3110.

    Article  Google Scholar 

  • Gu, P., Yan, X., 1995, Neural network approach to the reconstruction of freeform surfaces for reverse engineering. Computer Aided Design, 27(1): 59–64.

    Article  Google Scholar 

  • Hagstrum, M., Hildebrand, J., 1990, The Two-curvature method for reconstructing ceramic morphology. American Antiquity, 55: 388–403.

    Article  Google Scholar 

  • Halir, R., 1999, An Automatic Estimation of the Axis of Rotation of Fragments of Archaeological Pottery: A Multi-step Model-based Approach. In Proceedings of the Seventh International Conference in Central Europe on Computer Graphics. Visualization and Interactive Digital Media (WSCG’99). Edited by V. Skala.

    Google Scholar 

  • Hall, N.S., Laflin, S., 1984, A Computer Aided Design Technique for Pottery Profiles. In: Computer Applications in Archaeology. Edited by S. Laflin. Computer Center, University of Birmingham, Birmingham, pp. 178– 188.

    Google Scholar 

  • Hardaker, T., Dunn, S., 2005, The flip test – A new statistical measure for quantifying symmetry in stone tools. Antiquity, 79(306).

    Google Scholar 

  • Heideman, G., 2005, The long-range saliency of edgeand corner-based salient points. IEEE Transactions On Image Processing, 14(11): 1701–1706.

    Article  Google Scholar 

  • Henning, B., 2005, “Functional Reasoning”. Draft for the Conference “Norms, Reasoning and Knowledge in Technology”. IFOMIS Saarbrücken/HU Berlin. (http://www.borishennig.de/texte/2005/fctreasonII.pdf). Consulted on July 30th, 2005.

  • Henton, G., Durand, S.R., 1991, Projectile point measurement and classification using digital image processing. Journal of Quantitative Anthropology, 3: 53–82.

    Google Scholar 

  • Hermon, S., 2008, Reasoning In 3D: A Critical Appraisal Of The Role Of 3D Modelling And Virtual Reconstructions In Archaeology. In Beyond Illustration: 2D and 3D Digital Technologies as Tools for Discovery in Archaeology. Edited by B. Frischer. ArcheoPress, Oxford, pp. 36–45 (British Archaeological Reports).

    Google Scholar 

  • Hermon, S., Petrone, M., Calori, L., 2001, An Experimental Method For The Analysis of Attributes of Flint Artefacts Using Image Processing. In Computing Archaeology for Understanding the Past. Proceedings of the 28th Conference, Ljubljana, Slovenia, 18–21 April 2000. Edited by Z. Stancic and T. Veljanovski. BAR. International Series 931, Archaeopress, Oxford, pp. 91–98.

    Google Scholar 

  • Hörr, C., Brunner, D., Brunnett, G., 2007, Feature extraction on axially symmetric pottery for hierarchical classification. Computer-Aided Design & Applications, 4(1–4): 375–384.

    Google Scholar 

  • Howard, W.E., 2005, Introduction to Solid Modeling, McGraw-Hill, New York.

    Google Scholar 

  • Huang Q.-X., Flöry S., Gelfand N., Hofer M., Pottmann H., 2006, Reassembling fractured objects by geometric matching. ACM Transactions on Graphics (Proceedings of SIGGRAPH 2006) 25(3): 569–578.

    Google Scholar 

  • Hughes, J., 2009, An artifact is to use: An introduction to instrumental functions. Synthese, 168: 179–199.

    Article  Google Scholar 

  • Hummel, J.E., Biederman, I., 1992, Dynamic binding in a neural network for shape-recognition. Psychological Review, 99(3): 480–517.

    Article  Google Scholar 

  • Jang, J., Wonka, P., Ribarsky, J., Shaw, C.D., 2006, Punctuated simplification of man-made objects. Visual Computer, 22(2): 136–145.

    Article  Google Scholar 

  • Jelinek, H.F., Jones, C.L., Warfel, M.D., 1998, Is there meaning in fractal analysis? Complexity International, 6.

    Google Scholar 

  • Juhl, K., 1995, The relationship between vessel form and function. A methodological study. AmS-Skrifter 14, Akeologisk museum i Stavanger (Norway). 1–143.

    Google Scholar 

  • Kampel, M., Melero, F.J., 2003, Virtual Vessel Reconstruction From A Fragment’s Profile. In Proceedings of the 4th VAST. Edited by D. Arnold, A. Chalmers and F. Niccolucci, pp. 79–88.

    Google Scholar 

  • Kampel, M., Sablatnig, R., 2002, Automated Segmentation Of Archaeological Profiles For Classification. In International Conference on Pattern Recognition. Edited by R. Kasturi, D. Laurendeau and C. Suen. pp. 57–60.

    Google Scholar 

  • Kampel, M., Sablatnig, R., 2003a, Profile based Pottery Reconstruction. In: Proceedings of IEEE/CVPR Workshop on Applications of Computer Vision in Archaeology, CD-ROM. Edited by D. Martin. Madison, WI.

    Google Scholar 

  • Kampel, M., Sablatnig R., 2003b, An automated pottery archival and reconstruction system. Journal of Visualization and Computer Animation, 14(3): 111–120.

    Article  Google Scholar 

  • Kampel M., Sablatnig R., 2006, 3D Data Retrieval for Archaeological Pottery. In: Interactive Technologies and Sociotechnical Systems, Proceedings of 12th International Conference, VSMM 2006. Edited by H.Z.Z. Pan, H. Thwaites, A.C. Addison and M. Forte. Xi'an, China, October 18–20, Springer Lecture Notes in Computer Science Vol. 4270, pp. 387–395.

    Google Scholar 

  • Kampel M., Sablatnig R., 2007, Rule based system for archaeological pottery classification. Pattern Recognition Letters, 28: 740–747.

    Article  Google Scholar 

  • Kampel M., Sablatnig R., Mara H., 2005, Robust 3D Reconstruction of Archaeological Pottery based on Concentric Circular Rills. In WIAMIS05: The 6th International Workshop on Image Analysis for Multimedia Interactive Services. Edited by N. Magnenat-Thalmann and J.H. Rindel. Montreux, Switzerland, pp. 14–20.

    Google Scholar 

  • Kampel, M., Sablatnig, R., Mara, H., 2006a, 3D Acquisition of Archaeological Fragments and Web based 3D Data Storage. In: Proceedings of CAA06: Digital Discovery: Exploring New Frontiers in Human Heritage. Edited by J.T. Clark and E.H. Hagemeister. Fargo, April 18–23.

    Google Scholar 

  • Kampel, M., Mara, H., Sablatnig, R., 2006b, Automated Investigation of Archaeological Vessels. In Proceedings of EUSIPCO2006: 13th European Signal Processing Conference. Edited by M. Luise. Florence, Italy, September 4–8.

    Google Scholar 

  • Kampffmeyer, U., Zamperoni, P., Teegen, W.R., Graça, L., 1988, Untersuchungen zur rechnergestützen Klassifikation der Form von keramik. Frankfurt a.M. (Germany). Verlag Peter Lang (Arbeiten zur Urgeshichte des menschen, band 11).

    Google Scholar 

  • Karasik, A., 2008, Applications Of 3D Technology As A Research Tool In Archaeological Ceramic Analysis. In Beyond Illustration: 2d and 3d Digital Technologies as Tools for Discovery in Archaeology. Edited by B. Frischer. ArcheoPress, Oxford (British Archaeological Reports). pp. 111–124.

    Google Scholar 

  • Karasik, A., Smilansky, U., 2008, 3D scanning technology as a standard archaeological tool for pottery analysis: Practice and theory. Journal of Archaeological Science, 35: 1148–1168.

    Article  Google Scholar 

  • Karasik, A., Mara, H., Sablatnig, R., Smilansky, U., 2005, Measuring Deformations of Wheel-Produced Ceramics using High Resolution 3D Reconstructions. In The World is in your Eyes. Proceedings of the XXXIII Computer Applications and Quantitative Methods in Archaeology Conference. Edited by A. Figueiredo and G. Velho. Tomar, Portugal. Associaçâo para o Desenvolvimento das Aplicaçôes Informáticas e Novas Tecnologias em Arqueologia.

    Google Scholar 

  • Kardjilov, K., Fiori, F., Giunta, G., Hilger, A., Rustichelli, F., Strobl, M., Banhart, J., Triolo, R., 2006, Neutron tomography for archaeological investigations. Journal of Neutron Research, 14(1): 29–36.

    Article  Google Scholar 

  • Kendall, D.G., 1977, The diffusion of shape. Advances in applied probability, 9: 428–430.

    Article  Google Scholar 

  • Kendall, D.G., Barden, D., Carne, T.K., Le, H., 1999, Shape and Shape Theory. Wiley, Chichester.

    Google Scholar 

  • Kennedy, S.K., Lin, W.H., 1988, A fractal technique for the classification of projectile point shapes. GeoArchaeology, 3(4): 297–301.

    Article  Google Scholar 

  • Keogh, E., Lee, S.H., Zhu, Q., Wang, X., Rampley, T., 2009, Towards indexing and Datamining All the World’s Rock-Art. In Making History Interactive. Computer Applications and Quantitative Methods in Archeology Conference, Willimsburg, VA, March 22–26, 2009. (in press).

    Google Scholar 

  • Kitamura, Y., Mizogouchi, R., 1999, An Ontology of Functional Concepts of Artifacts. Artificial Intelligence Research Group. The Institute of Scientific and Industrial Research. Osaka University (AI-TR-99-1). (http://www.ei.sanken.osaka-u.ac.jp/pub/kita/kita-tr9901.pdf).

  • Kitamura, Y., Mizogouchi, R., 2004, Ontology-based systematization of functional knowledge. Journal of Engineering Design, 15(4): 327–351.

    Article  Google Scholar 

  • Koch, M., 2009, Combining 3D laser-Scanning and close-range Photogrammetry-An approach to Exploit the Strength of Both methods. In Making History Interactive. Computer Applications and Quantitative Methods in Archeology Conference, Willimsburg, VA, March 22–26, 2009. (in press).

    Google Scholar 

  • Kong, W., Kimia, B.B., 2001, On solving 2d And 3d puzzles using curve matching. IEEE Conference on Computer Vision and Pattern Recognition, 2: 583.

    Google Scholar 

  • Kuhn, S.L., 1990, A geometric index of reduction for unifacial stone tools. Journal of Archaeological Science, 17: 585–593.

    Article  Google Scholar 

  • Kulkarni, A.D., 2001, Computer Vision and Fuzzy-neural Systems. Prentice Hall, Upper Saddle River.

    Google Scholar 

  • Lambers, K., Remondino, F., 2007, Optical 3D Measurement Techniques In Archaeology: Recent Developments And Applications. In Layers of Perception. Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). Berlin, Germany, April 2–6, 2007. Edited by A. Posluschny, K. Lambers and I. Herzog, Kolloquien zur Vor- und Frühgeschichte, Vol. 10. Bonn Dr. Rudolf Habelt GmbH.

    Google Scholar 

  • Lambers, K., Eisenbeiss, H., Sauerbier, M., Kupferschmidt, D., Gaisecker, T., Sotoodeh, S., Hanusch, T., 2007, Combining photogrammetry and laser scanning for the recording and modelling of the late intermediate period site of Pinchango Alto, Palpa, Peru. Journal of Archaeological Science, 34(10) : 1702–1712.

    Article  Google Scholar 

  • Laplace, G., 1972, La Typologie Analytique et Structurale. CNRS, Paris.

    Google Scholar 

  • Le, H., Small, C.G., 1999, Multidimensional scaling of simplex shapes. Pattern Recognition, 32: 1601–1613.

    Article  Google Scholar 

  • Leese, M.N., Main, P.L., 1983, An Approach to the Assessment of Artefact Dimension as Descriptors of Shape. In Computer Applications in Archaeology 1983. Edited by J.G.B. Haigh. University of Bradford, School of Archaeological Sciences, Bradford, pp. 171–180.

    Google Scholar 

  • Leitao, H.D., Da Gama, D., Stolfi, J., 2001, Digitization and Reconstruction of Archaeological Artifacts XIV Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI'01) (http://csdl2.computer.org/comp/proceedings/sibgrapi/2001/1330/00/13300382.pdf).

  • Leitao, H.D. Da Gama, D., Stolfi, J., 2002, A Multiscale method for the reassembly of two-dimensional fragmented objects. IEEE Transactions on Pattern Analysis and machine Intelligence, vol. 24 (9), pp.1239-1251.

    Article  Google Scholar 

  • Leitao, H.D. Da Gama, D., Stolfi, J., 2005, Measuring the information content of fracture lines international. Journal of Computer Vision, 65(3): 163–174.

    Article  Google Scholar 

  • Lele, S.R., Richtsmeier, J.T., 2001, An Invariant Approach to the Statistical Analysis of Shapes. Chapman and Hall/CRC, Boca Raton.

    Google Scholar 

  • Lewis, P.H., Goodson, K.J., 1990, Images, databases and edge detection for archaeological object drawings.Computer Applications and Quantitative Methods in Archaeology, 1990: 149–153.

    Google Scholar 

  • Leymarie, F.F., 2003, Three-Dimensional Shape Representation via Shock Flows. Ph.D. Dissertation. Brown University, Division of Engineering. Provedence (RI). (http://www.lems.brown.edu/shape/Presentations/Leymarie02/FolLeymariePhD.pdf). Downloaded on april 2009.

  • Leyton, M., 1992, Symmetry, Causality, Mind. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Leyton, M., 2005, Shape as memory Storage. In Ambient intelligence for scientific discovery. Edited by C. Young. Berlin, Springer-Verlag Lecture Notes in Artificial Intelligence Vol. 3345.

    Google Scholar 

  • Liming, G., Hongjie, L., Wilcock, J., 1989, The analysis of ancient Chinese pottery and porcelain shapes: A study of classical profiles from the Yangshao culture to the Qing dynasty using computerized profile data reduction, cluster analysis and fuzzy boundary discrimination. Computer Applications and Quantitative Methods in Archaeology, 1989: 363–374.

    Google Scholar 

  • Lohse, E.S., Schou, C., Schlader, R., Sammons, D., 2004, Automated Classification of Stone projectile Points in a Neural Network. In Enter the Past. The e-way into the four dimensions of culture heritage. Edited by Magistrat der Stadt Wien-Referat Kulturelles Erbe-Städtarhchäologie Wien. ArcheoPress, Oxford, BAR International Series S1227, pp. 431–437.

    Google Scholar 

  • Lu, Y. Gardner, H., Jin, H., Liu, N., Hawkins, R., Farrington, I., 2007, Interactive reconstruction of archaeological fragments in a collaborative environment digital image computing techniques and applications. 9th Biennial Conference of the Australian Pattern Recognition Society on Volume, (3): 23–29.

    Google Scholar 

  • Lycett, S.J., 2008, Acheulean variation and selection: Does handaxe symmetry fit neutral expectations? Journal of Archaeological Science, 35: 2640–2648.

    Article  Google Scholar 

  • Lycett, S.J., von Cramon-Taubadel, N., Foley, R.A., 2006, A crossbeam co-ordinate caliper for the morphometric analysis of lithic nuclei: A description, test and empirical examples of application. Journal of Archaeological Science, 33: 847– 861.

    Article  Google Scholar 

  • Lyman, R.L., VanPool, T.L., O’Brien, M.J., 2008, Variation in north American dart points and arrow points when one or both are present. Journal of Archaeological Science, 35: 2805–2812.

    Article  Google Scholar 

  • Maaten, L.P.J., Boon, P.J., Lange, A.G., Paijmans, P.P., Postma, E.O., 2006, Computer Vision and Machine Learning for Archaeology. In Digital Discovery. Exploring New Frontiers in Human Heritage. Fargo CAA2006. Computer Applications and Quantitative Methods in Archaeology. Edited by J.T. Clark and E.M. Hagemeister, pp. 361–367.

    Google Scholar 

  • Maaten, L.P.J., Lange, G., Boon, P., 2009, Visualization and Automatic Typology Construction of ceramic profiles. In Making History Interactive. Proceedings of the 37th Computer Applications in Archaeology Conference. Edited by B. Frischer and L. Fischer. Williamsburg, VA, March 22–26, 2009. (in press).

    Google Scholar 

  • Mafart, B., Delingette, H., eds., 2002, Three-Dimensional Imaging in Paleoanthropology and Prehistoric Archaeology, Acts of the XIVth UISPP Congress, University of Liège, Belgium, 2–8 September 2001, ArcheoPress, Oxford, BAR International Series, S1049.

    Google Scholar 

  • Maiza, C., Gaildrat, V., 2005, Automatic Classification of Archaeological Potsherds. In The 8th International Conference on Computer Graphics and Artificial Intelligence, 3IA'2005, Limoges, France.

    Google Scholar 

  • Maiza, C., Gaildrat, V., 2006, SemanticArcheo: A Symbolic approach of Pottery Classification. In The 7th International Symposium on Virtual Reality, Archaeology and Cultural heritage. VAST2006. Edited by M. Ioannidis, D. Arnold, F. Nicolucci and K. Mania. Archeolingua, Budapest.

    Google Scholar 

  • MacLeod, N., 2002, Geometric morphometrics and geological shape-classification systems. Earth-Science Reviews, 59: 27–47.

    Article  Google Scholar 

  • Mameli, L., Barceló, J.A., Estévez, J., 2002, The Statistics of Archeological Deformation Processes. A zooarchaeological experiment. In Archaeological Informatics: Pushing the Envelope. Edited by G. Burenhult. ArcheoPress, Oxford, BAR International Series 1016, pp. 221–230. (http://prehistoria.uab.cat/Barcelo/publication/MameliBarceloEstevez.pdf).

  • Manferdini, A.M., Remondino, F., Baldissini, S., Gaiani, M., Benedetti, B., 2008, 3D modeling and semantic classification of archaeological finds for management and visualization in 3D archaeological databases. In Proceedings of 14th International Conference on Virtual Systems and MultiMedia (VSMM 2008), pp. 221–228, Cyprus, Limassol.

    Google Scholar 

  • Mara, H., Sablatnig, R., 2005a, A Comparison of Manual, Semiautomatic and Automatic Profile Generation for Archaeological Fragments. In Proceedings of the 10th Computer Vision Winter Workshop. Edited by A. Hanbury, H. Bischof. Zell an der Pram, Austria, pp. 123–134.

    Google Scholar 

  • Mara, H., Sablatnig, R., 2005b, 3D-vision applied in archaeology. Forum Archaeologiae – Zeitschrift für klassische Archäologie, 34(3).

    Google Scholar 

  • Mara, H., Sablatnig, R., 2006, Orientation of Fragments of Rotationally Symmetrical 3D-Shapes for Archaeological Documentation. In Proceedings of 3rd International Symposium on 3D Data Processing, Visualization and Transmission (3DPVT). Edited by M. Pollefeys, K. Daniilidis. Chapel Hill, June 14–16, pp. 1064–1071.

    Google Scholar 

  • Mara, H., Sablatnig, R., 2008, Evaluation of 3D shapes of ceramics for the determination of manufacturing techniques. In layers of perception. Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology, Berlin, April 2007. Edited by A. Posluschny, K. Lambers and I. Herzog. Berlin, Rudof von Habelt Verlag (Kolloquien zur Vor- und Frühgeshichte, Band 10.

    Google Scholar 

  • Mara, H., Sablatnig, R., Karasik, A., Smilansky, U., 2004, The Uniformity of Wheel Produced Pottery Deduced from 3D Image Processing and Scanning. In Digital Imaging in Media and Education, Proceedings of the 28th Workshop of the Austrian Association for Pattern Recognition (OAGM/AAPR). Edited by W. Burger, J. Scharinger. Schriftenreihe der OCG, Vol. 179, pp. 197–204.

    Google Scholar 

  • Marr, D.H., 1982, Vision, A Computacional Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman, San Francisco.

    Google Scholar 

  • Martin, D.H., Fowlkes, C., Malik, J., 2004, Learning to 1detect natural image boundaries using local brightness, color, and texture cues. IEEE Transactions On Pattern Analysis And Machine Intelligence, 26(5): 530–549.

    Article  Google Scholar 

  • Martín, D., Melero, F.J., Cano, P., Torres, J.C., 2009, Feature preserving simplification of Point Clouds from large Range laser Scanners. In Making History Interactive. Proceedings of the 37th Computer Applications in Archaeology Conference. Edited by B. Frischer and L. Fischer. Williamsburg, VA, March 22–26, 2009. (in press).

    Google Scholar 

  • Marr, D., Hildreth, E., 1980, Theory of edge detection. Proceedings of the Royal Society of London B, 207: 187–217.

    Google Scholar 

  • McClamrock, R., 1993, Functional analysis and Etiology. Erkentniss, 38: 249–260.

    Google Scholar 

  • McGrew, W.C., 1993, The Intelligent Use of Tools: Twenty Propositions. In Tools, Language, and Cognition in Human Evolution. Edited by K.R. Gibson and T. Ingold. Cambridge University Press, Cambridge, pp. 151–170.

    Google Scholar 

  • Melero, F.J., Torres, J.C., Leon, A., 2003, On the Interactive 3d Reconstruction of Iberian Vessels. In 4th International Symposium on Virtual Reality, Archaeology and Intelligent Cultural Heritage, VAST’03. Edited by F. Niccolucci D. Arnold and A. Chalmers.

    Google Scholar 

  • Meltzer, D.J., Cooper, J.R., 2006, On morphometric differentiation of clovis and non-clovis blades. Current Research in the Pleistocene, 23: 143–145.

    Google Scholar 

  • Millikan, R.G., 1999, Wings, spoons, pills and quills: A pluralist theory of function. Journal of Philosphy, 96: 192–206.

    Google Scholar 

  • Mom, V., 2005, SECANTO –The Section Analysis Tool. In The World is in your Eyes. Proceedings of the XXXIII Computer Applications and Quantitative methods in Archeology Conference (March 2005). Edited by A. Figueiredo and G. Velho. Tomar, Portugal, pp. 95–102. Associaçaâo para o Desenvolvimiento das Aplicaçôes Informáticas e Novas Tecnologias em Arqueologia.

    Google Scholar 

  • Mom, V., 2006, Where Did I See You Before. Holistic Method to Compare and Find Archaeological Artifacts. In Advances in Data Analysis. Proceedings of the 30th Annual Conference of the Gesellschaft für Klassifikation e.V. Edited by R. Decker and H.-J. Lenz. Springer, Freie Universität Berlin, March 8–10.

    Google Scholar 

  • Mom, V., Paijmans, H., 2008, SECANTO: A Retrieval System and Classification Tool for Simple Artefacts. In Layers of Perception. Proceedings of the 35th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). Berlin, Germany, April 2–6, 2007. Edited by A. Posluschny, K. Lambers and I. Herzog, Kolloquien zur Vor- und Frühgeschichte, Vol. 10. Bonn Dr. Rudolf Habelt GmbH.

    Google Scholar 

  • Morris, G., Scarre, C.J., 1981, Computerized analysis of the shapes of prehistoric stone tools from west-central France. Computer Applications in Archaeology, 1981: 83–94.

    Google Scholar 

  • Movchan, A.B., Movchan, N.V., 1998, Mathematical Modeling of Solids with Nonregular Boundaries. CRC Press, London.

    Google Scholar 

  • Nagel, E., 1961, The Structure of Science. Harcourt, Brace and World Inc., New York and Burlingame.

    Google Scholar 

  • Nautiyal, V., Kaushik, V.D., Pathak, V.K., Dhande, S.G., Nautiyal, S., Naithani, M., Juyal, S., Gupta, R.K., Vasisth, A.K., Verma K.K., Singh, A., 2006, Geometric Modeling of Indian Archaeological Pottery: A Preliminary Study. InDigital Archaoelogy. Exploring new frontiers in Human Heritage. Edited by J.T. Clark and E.H. Hagemeister. Archeolingua press, Budapest.

    Google Scholar 

  • Neander, K., 1991, The teleological notion of function. Australian Journal of Philosophy, 69: 454–68.

    Google Scholar 

  • Nelson, B., 1985, Reconstructing Ceramic Vessels and Their Systemic Contexts. In Decoding Prehistoric Ceramics. Edited by B. Nelson. Southern Illinois University Press, Carbondale, pp. 310–329.

    Google Scholar 

  • Nelson, R.C., Selinger, A., 1998, Large-scale tests of a keyed, appearance-based 3-D object recognition system. Vision research, 38(15–16): 2469–2488.

    Article  Google Scholar 

  • Nowell, A., Park, K., Metaxas, D., Park, J., 2003, Deformation Modeling: A Methodology for the Analysis of Handaxe Morphology and Variability. In Multiple Approaches to the Study of Bifacial Technologies. Edited by M. Soressi and H.L. Dibble. University of Pennsylvania Museum of Archaeology and Anthropology, Philadelphia, pp. 193–208.

    Google Scholar 

  • O’Brien, M.J., Lyman, R.L., 2002, Seriation, Stratigraphy and Index Fossils. Kluwer, New York.

    Google Scholar 

  • O’Gorman, L., Sammon, M.J., Seul, M., 2008, Practical Algorithms for Image Analysis. Cambridge University Press, Cambridge.

    Google Scholar 

  • Orton, C., Tyers, P., Vine, A., 1993, Pottery in Archaeology. Cambridge University Press, Cambridge.

    Google Scholar 

  • Otárola-Castillo, E., Adams, D., Coinman, N.R., Collyer, M.C., 2008, Differences between Point Morphology Methods: Traditional Caliper Measurements versus Geometric Morphometrics. In Advances in the Study of Lithic Morphology Symposium. 73rd Annual Society for American Archaeology Meeting, Vancouver, British Columbia, Canada, March 27. Edited by E. Otárola-Castillo, B.J. Schoville and A.R. Boehm. ArcheoPress, Oxford (in press).

    Google Scholar 

  • Ozmen, C., Balcisoy, S., 2006, 3D Spatial Measurement Tools for Digitized Artifacts. In Digital Archaoelogy. Exploring new frontiers in Human Heritage. Edited by J.T. Clark and E.H. Hagemeister. Archeolingua press, Budapest.

    Google Scholar 

  • Palmer, S., 1999, Vision Science. Photons to Phenomelogy. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Pande, C.S., Richards, L.R., Smith, S., 1987, Fractal characteristics of fractured surfaces. Journal of Materials Science Letters, 6(3).

    Google Scholar 

  • Papaioannou, G., Karabassi, E.A, 2003, On the automatic assemblage of arbitrary broken solid artefacts. Image and Vision Computing, 21: 401–412.

    Article  Google Scholar 

  • Papaioannou, G., Karabassi, E.A., Theoharis, T., 2002, Reconstruction of three-dimensional objects through matching of their parts. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(1): 114–124.

    Article  Google Scholar 

  • Pasko, G., Pasko, A., 2006, Function-based Shape modelling fort Cultural heritage Applications. In The 7th International Symposium on Virtual Reality, Archaeology and Cultural heritage. VAST2006. Edited by M. Ioannidis, D. Arnold, F. Nicolucci and K. Mania. Archeolingua, Budapest.

    Google Scholar 

  • Pasko, A., Adzhiev, A., Sourin, V., Savchenko, V., 1995, Function representation in geometric modeling: Concepts, implementation and applications. The Visual Computer, 11(8): 429–446.

    Article  Google Scholar 

  • Pechuk, M., Soldea, O., Rivlin, E., 2005, Function-Based Classification from 3D Data via Generic and Symbolic Models. In Twentieth National Conference on Artificial Intelligence (AAAI-05), Pittsburgh, PA (http://www.cs.technion.ac.il/˜mpechuk/publications/oclsAAAI05.pdf).

  • Peng, L.W., Shamsuddin, S.M., 2004, Modeling II: 3D Object Reconstruction and Representation using Neural Networks. In Proceedings of the 2nd International Conference on Computer Graphics and Interactive Techniques in Australasia and Southeast GRAPHITE ’04. Published by the Academy of Computing Machinery Press.

    Google Scholar 

  • Petersen, C., Schlader, R., Chapman, R.E., Deck, L.T., Clement, N., Heydt, R., 2006, Three-Dimensional Scanning of Archeological Objects for Research, Outreach, and Specimen Archiving: Potentials and Responsibilities. In Digital Archaoelogy. Exploring new frontiers in Human Heritage. Edited by J.T. Clark and E.H. Hagemeister. Archeolingua press, Budapest.

    Google Scholar 

  • Peterson, J.W.M., 1992, Fourier Analysis of Field Boundaries In CAA91: Computer Applications and Quantitative Methods in Archaeology 1991 BAR International Series S577. Edited by G. Lock and J. Moffett. Tempus Reparatum, Oxford, pp. 149–156.

    Google Scholar 

  • Pijoan, J., 2007, Quantificació de traces d’us en instruments lítics mitjançant imatges digitalitzades: Resultats d’experiments amb Xarxes Neurals i estadística. Ph.D. Dissertation. Universitat Autonoma de Barcelona, Spain.

    Google Scholar 

  • Piperakis, E., Kumazawa, I., 2001, Affine Transformations of 3D Objects Represented with Neural Networks. In 3-D Digital Imaging and Modeling, Proceedings, pp. 213–223.

    Google Scholar 

  • Pires, H., Ortiz, P., Marques, P., Sanchez, H., 2007, Close-range Laser Scanning Applied to Archaeological Artifacts Documentation. Virtual Reconstruction of an XVIth Century Ceramic Pot. In The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage VAST (2006). Edited by M. Ioannides, D. Arnold, F. Niccolucci and K. Mania. ArcheoLingua, Budapest.

    Google Scholar 

  • Pobelome, J. et al. 1997, Manual Drawing Versus Automated Recording of Ceramics. In: Sagalasos IV. Acta Archaeologica Lovaniensia Monographiae 9. Edited by M. Walkens. Leuven, pp. 533–538.

    Google Scholar 

  • Ponce, J., Hebert, M., Schmid, C., Zisserman, A., 2007, Toward Category-Level Object Recognition, Springer-Verlag Lecture Notes in Computer Science, Vol. 4170.

    Google Scholar 

  • Porter, D., Werner, P., Utcke, S., 2005, Ancient Ceramics: Computer aided Classification. Technical Report M-338. University of Hamburg, Computer Science Department, KOGS – Cognitive Systems Group. (http://www.informatik.uni-hamburg.de/bib/medoc/M-338.pdf). Downloaded on April 2009.

  • Puente, C.E., Castillo, P.A., 1996, On the fractal structure of networks and dividers within a watershed. Journal of Hydrology, 187: 173–181.

    Article  Google Scholar 

  • Razdan, A., Liu, D., Bae, M., Zhu, M., Farin, G., Simon, A., Henderson, M., 2001, Using Geometric Modeling for Archiving and Searching 3D Archaeological Vessels. CISST 2001 June 25–28, 2001, Las Vegas.

    Google Scholar 

  • Razdan, A., Liu, D., Bae, M., Zhu, M., Simon, A., Farin, G., Henderson, M., 2004, Shape Modeling for 3D Archaeological Vessels. In Geometric Modeling: Techniques, Applications, Systems and Tools. Edited by M. Sarfraz. Kluwer Academic Publishers, Norwell, MA, pp. 362–374.

    Google Scholar 

  • Read, D., 2007, Artifact Classification. A Conceptual and Methodological Approach. Left Coast Press, Walnut Creek, CA.

    Google Scholar 

  • Reuter, P., Riviere, G., Couture, N., Sorraing, N., Espinasse, L., Vergnieux, R., 2007, ArcheoTUI – A Tangible User Interface for the Virtual. In The 8th International Symposium on Virtual Reality, Archaeology and Cultural Heritage. VAST (2007) Edited by D. Arnold, F. Niccolucci and A. Chalmers. ArcheoLingua, Budapest.

    Google Scholar 

  • Richards, J.D., 1987, The Significance of Form and Decoration of Anglo-Saxon Cremation Urns. ArcheoPress, Oxford (British Archaeological Reports, British Series, 166).

    Google Scholar 

  • Riel-Salvatore, J., Bae, M., McCartney, P., Razdan, A., 2002, Paleolithic archaeology and 3D visualisation technology: Recent developments. Antiquity, 76: 929–930.

    Google Scholar 

  • Rovner, I., 1993, Complex Measurements Made Easy: Morphometric Analysis of Artefacts Using Expert Vision Systems. In Computer Applications in Archaeology 1993. Edited by J. Wilcock and K. Lockyear. ArcheoPress, Oxford (British Archaeological Reports).

    Google Scholar 

  • Rovner, I., 2006, Computer-assisted Morphometry of Digital Images: Beyond Typology in the Morphological Analysis of the Broad Spectrum of Archaeomaterials. In Digital Archaoelogy. Exploring New Frontiers in Human Heritage. Edited by J.T. Clark and E.H. Hagemeister. Archeolingua press, Budapest.

    Google Scholar 

  • Rovner, I., Gyulai, F., 2007, Computer-assisted morphometry: A new method for assessing and distinguishing morphological variation in wild and domestic seed populations. Economic Botany, 61(2): 154–172.

    Article  Google Scholar 

  • Rowe, J., Razdan, A., 2003, A Prototype Digital Library For 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data. Museums and the Web 2003 Conference, March 19–22, Charlotte, North Carolina.

    Google Scholar 

  • Rushmeier, H., Xu, C., Wang, B., Rushmeier, R., Dorsey, J., 2007, Shape Capture Assisted by Traditional Tools. In 8th International Symposium on Virtual reality, Archaeology and Intelligent Cultural Heritage (5th Eurographics Workshop on Graphics and Cultural heritage), Brighton, November 26–30, 2007. Published by Eurographics Association, TU Darmstadt & Fraunhofer IGD, pp. 1–8.

    Google Scholar 

  • Russ, J.C., 1990, Computer-Assisted Microscopy: The Measurement and Analysis of Images. Plenum Press. New York.

    Google Scholar 

  • Russ, J.C., 2006, The Image Processing Handbook, CRC Press, London.

    Google Scholar 

  • Russ, J.C., Rovner, I., 1989, Expert vision systems in archaeometry: Rapid morphometric analysis of chaotic form, shape and structure. Materials research society bulletin: Microscopy for the archaeologist, 14: 3140–144.

    Google Scholar 

  • Sagiroglu, M., Erçil A., 2005, A Texture Based Approach to Reconstruction of Archaeological Finds. In Proceedings of VAST 2005, pp. 137–142.

    Google Scholar 

  • Saragusti, I., Karasik, A., Sharon, I., Smilansky, U., 2005, Quantitative analysis of shape attributes based on contours and section profiles in artifact analysis.Journal of Archaeological Science, 32(6): 841–853.

    Article  Google Scholar 

  • Sarfraz, M., 2007, Interactive Curve Modeling: With Applications to Computer Graphics, Vision and Image Processing. Springer, New York.

    Google Scholar 

  • Schneidermann, H., Kanade, T., 2004, Object detection using the statistics of parts. International Journal of Computer Vision, 56(3): 151–177.

    Article  Google Scholar 

  • Schurmans, U., Razdan, A., Simon, A., Marzke, M., McCartney, P., Van Alfen, D., Jones, G., Zhu, M., Liu, D., Bae, M., Rowe, J., Farin, G., Collins, D., 2002, Advances in Geometric Modeling and Feature Extraction on Pots, Rocks and Bones for Representation and Query via the Internet. In Archaeological Informatics: Pushing the Envelope CAA 2001. Computer Application and Quantitative Methods in Archaeology. Proceedings of the 29th Conference, Gotland, April 2001. Edited by G. Burenhult and J. Arvidsson. Archaeopress, Oxford, BAR International Series 1016, pp. 191–202.

    Google Scholar 

  • Senior, L.M., Birnie, D.P., 1995, Accurately estimating vessel volume from profile illustrations, American Antiquity, 60(2): 319–334.

    Article  Google Scholar 

  • Shelley, C.P., 1996, Visual abductive reasoning in archaeology. Philosophy of Science, 63: 278–301.

    Article  Google Scholar 

  • Simon, A., Van Alfen, D., Razdan, A., Farin, G., Bae, M., Rowe, J., 2002, 3D Modeling for Analysis and Archiving of Ceramic Vessel Morphology: A Case Study from the American Southwest. In Proceedings of the 33rd International Symposium on Archaeometry. Geoarchaeological and Bioarchaeological Studies, Vrije Universiteit, Amsterdam, 2002.

    Google Scholar 

  • Slice, D.E., 2007, Geometric morphometrics. Annual Review of Anthropology, Vol. 36.

    Google Scholar 

  • Small, C.G., 1996, The Statistical Theory of Shape. Springer, New York.

    Google Scholar 

  • Smith, M.F., 1983, The Study of Ceramic Function from Artifact Size and Shape. PhD. Disertation. University of Oregon.

    Google Scholar 

  • Smith, M.F., 1985, Toward an Economic Interpretation of Ceram- ics: Relating Vessel Size and Shape to Use. In De- coding Prehistoric Ceramics. Edited by B. Nelson. Southern Illinois University Press, Carbondale, pp. 254–309.

    Google Scholar 

  • Sonka, M., Hlavac, V., Boyle, R., 1984, Image Processing, Analysis and Machine Vision. Chapman and Hall, London.

    Google Scholar 

  • St. Amant, R., 2002, A Preliminary Discussion of Tools and Tool Use’. Technical Report TR- 2002-06, North Carolina State University.

    Google Scholar 

  • Steine, M., 2005, Approaches to Archaeological illustration. A Handbook. Council for British Archaeology. Practical Handbook No. 18.

    Google Scholar 

  • Trinkl, E., 2005, 3d-vision applied in archaeology. Forum Archaeologiae Zeitschrift für klassische Archäologie, 34(III): 2005.

    Google Scholar 

  • Tsioukas, V., Patias, P., Jacobs, P.F., 2004, A novel system for the 3D reconstruction of small archaeological objects. International Archives Of Photogrammetry Remote Sensing And Spatial Information Sciences, 35(5): 815–818.

    Google Scholar 

  • Tsirliganis, N., Pavlidis, G., Koutsoudis, A., Papadopoulou, D., Tsompanopoulos, A., Stavroglou, K., Loukou, Z., Chamzas, C., 2002, Archiving 3D Cultural Objects with Surface Point-Wise Database Information, In First International Symposium on 3D Data Processing Visualization and Transmission, June 19–21, 2002, Padova, Italy.

    Google Scholar 

  • Tuceryan, M., Jain, A.K., 1993, Texture Analysis. In Handbook of Pattern Recognition & Computer Vision. Edited by C.H. Chen, L.F. Pau and P.S.P. Wang. World Scientific, Singapore, pp. 235–276.

    Google Scholar 

  • Van der Leeuw, S.E., 2000, Making Tools from Stone and Clay. In Australian archaeologist: Collected papers in honour of Jim Allen. Edited by P. Anderson and T. Murray. Australian National University Press, Canberra.

    Google Scholar 

  • Vermaas, P.E., Houkes, W., 2003, Ascribing functions to technical artefacts: A challenge to etiological accounts of functions. British Journal for the Philosophy of Science, 54: 261–289.

    Article  Google Scholar 

  • Vilbrandt, C.W., Pasko, G.I., Pasko, A.A., Fayolle, P.A., Vilbrandt, T.I., Goodwin, J.R., Goodwin, J.M., Kunii, T.L., 2004, Cultural heritage preservation using constructive shape modeling. Computer Graphics Forum, 23(1): 25–41.

    Article  Google Scholar 

  • Wang, H., Li, H., Ye, X., Gu, W., 2000, Training a neural network for moment based image edge detection. Journal of Zhejiang University SCIENCE, 1(4): 398–401.

    Article  Google Scholar 

  • Whallon, R., 1982, Variables And Dimensions: The Critical Step In Quantitative Typology. In Essays In Archaeological Typology. Edited by R. Whallon and J.A. Brown. Center for American archaeology press, Evanston, IL, pp. 127–161.

    Google Scholar 

  • Wilcock, J.D., Shennan, S.J., 1975, Computer Analysis of Pottery Shapes. In Computer Applications in Archaeology 1975. Edited by S. Laflin. University of Birmingham, England, pp. 98–106.

    Google Scholar 

  • Willemin, J.H., 2000, Hack's Law: Sinuosity, convexity, elongation. Water Resource Research, 36: 3365–3374.

    Article  Google Scholar 

  • Willis, A.R., Cooper, D.B., 2004, Bayesian Assembly of 3d Axially Symmetric Shapes from Fragments. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 82–89.

    Google Scholar 

  • Willis, A., Orriols, X., Cooper, D.B., 2003, Accurately Estimating Sherd 3D Surface Geometry with Application to pot Reconstruction. In IEEE Workshop on Applications of Computer Vision in Archaeology.

    Google Scholar 

  • Winkelbach, S., Wahl, F.M., 2008, Pairwise matching of 3D fragments using cluster trees. International Journal of Computer Vision, 78(1): 1–13.

    Article  Google Scholar 

  • Wright, L., 1973, Functions. Philosphical Review, 82: 139–68.

    Google Scholar 

  • Wynn, T., Tierson, F., 1990, Regional comparison of the shapes of later Acheulan handaxes. American Anthorpologist, 92: 73–84.

    Article  Google Scholar 

  • Yao, F., Shao, G., 2003, Detection of 3D Symmetry Axis from Fragments of a Broken Pottery Bowl. Acoustics, Speech, and Signal Processing. Proceedings (ICASSP ’03), 3: 505–508.

    Google Scholar 

  • Zaharieva, M., Kampel, M., Vondrovec, K., 2008, From Manual to Automated Optical Recognition of Ancient Coins. In VSMM 2007. Edited by T.G. Wyeld, S. Kenderdine and M. Docherty. LNCS 4820, 2008. Springer, Berlin, pp. 88–99.

    Google Scholar 

  • Zhang, W.Y., Tor, S.B., Britton, G.A., 2002, Automated functional design of engineering systems. Journal of Intelligent Manufacturing, 13(2): 119–133.

    Google Scholar 

  • Zhou, M., Wu, Z., Shui, W., 2009, Computer Assisted Recovery Technology of Broken Rigid Objects and Its Applications in Terra Cotta Warriors and Horses. In Making History Interactive. Proceedings of the 37th International Conference on Computer Applications and Quantitative Methods in Archaeology (CAA). Edited by B. Frischer and L. Fisher. Williamsburg, VA, March 22–26, 2009. (in press).

    Google Scholar 

  • Zhu, L., Zhou, Z., Zhang, J., Hu, D., 2006, A Partial Curve Matching Method for Automatic Reassembly of 2D Fragments. In Intelligent Computing in Signal Processing and Pattern Recognition. Edited by D.-S. Huang, K. Li, and G.W. Irwin. Springer, LNCIS 345, pp. 645–650.

    Google Scholar 

Download references

Acknowledgments

Special thanks to Marcelo Cardillo for comments on a previous version of this paper. Erik Otarola-Castillo and R. Sant-Amant sent me details of their interesting research. Xavier Clop, Mercedes Farjas and F.J. Melero have also contributed to my understanding of what should be a comprehensive visual analysis in archaeology. Thanks also to my students at the Dept. of prehistory (Universitat Autònoma de Barcelona, Spain) who are beginning to explore the many possibilities of shape analysis in archaeology. Parts of this research have been funded by the Spanish Ministry of Science and Innovation, The Generalitat de Catalunya and the Universitat Autònoma de Barcelona.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan A. Barceló .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barceló, J.A. (2010). Visual Analysis in Archaeology. An Artificial Intelligence Approach. In: Elewa, A. (eds) Morphometrics for Nonmorphometricians. Lecture Notes in Earth Sciences, vol 124. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95853-6_5

Download citation

Publish with us

Policies and ethics