Skip to main content

Gas Exchange and Control of Respiration in Air-Breathing Teleost Fish

  • Chapter
  • First Online:
Cardio-Respiratory Control in Vertebrates

Abstract

Atmospheric air at sea level contains 30 times more O2, when compared to fully O2-saturated water and, in addition, the O2 content of water is ever-changing. The gill systems of fish are highly efficient for O2 extraction, but this cannot save the animal if its O2 supply is insufficient. This explains why air-breathing in fish has evolved in at least 60 independent lines. Lungfish and bichirs (Polypteriidae) possess true lungs, whereas other air-breathing organs (ABOs) can be derived from the swimbladder as in the gar pike (Lepidosteus) and the bowfin (Amia). In Hypostomus sp. (Loricariidae) the ABO is a modified part of the digestive system. The functions of gills, ABOs and lungs all depend on surfactants. Aerial breathing increases with activity and/or reduced O2 availability in the water. In addition, increases of temperature result in larger air-breathing efforts. These responses are adjusted by O2 receptors, located in the gills, whereas the role CO2/H+-receptors is minor in actinopterygian fish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albers C, Manz R, Muster D, Hughes GM (1983) Effects of acclimation temperature on oxygen transport in the blood of the carp, Cyprinus carpio. Respiration Physiology 52:165–179

    Article  PubMed  CAS  Google Scholar 

  • Amin-Naves J, Giusti H, Glass ML (2004) Effects of acute temperature changes on aerial and aquatic gas exchange, pulmonary ventilation and blood gas status in the South American lungfish, Lepidosiren paradoxa. Comparative Biochemistry and Physiology A 138:133–139

    Article  CAS  Google Scholar 

  • Amin-Naves J, Giusti H, Hoffman A, Glass ML (2007a) Components to the acid-base related ventilatory drives in the South American lungfish Lepidosiren paradoxa. Respiratory Physiology and Neurobiology 155(1):35–40

    Article  CAS  Google Scholar 

  • Amin-Naves J, Giusti H, Hoffman A, Glass ML (2007b) Central ventilatory control in the South American lungfish, Lepidosiren paradoxa: contributions of pH and CO2. Journal of Comparative Physiology B 177:529–534

    Article  CAS  Google Scholar 

  • Andresen JH, Ishimatsu A, Johanse K, Glass ML (1987) An angiographic analysis of the central circulation in the air breathing teleost Channa argus. Acta Zoologica (Stockholm) 68:165–171

    Article  Google Scholar 

  • Babiker MM (1984) Development of dependence on aerial respiration in Polypterus senegalis (Cuvier) Hydrobiologia 110:351–363

    Article  Google Scholar 

  • Bassi M, Klein W, Fernandes MN, Perry SF, Glass ML (2005) Pulmonary oxygen diffusing capacity of the South American lungfish Lepidosiren paradoxa: Physiological values by the Bohr integration method. Physiological and Biochemical Zoology 78(4):560–569

    Article  PubMed  CAS  Google Scholar 

  • Berner RA, Canfield DE (1989) A new model of for atmospheric oxygen over phanerozoic time. American Journal of Science 289:33–361

    Google Scholar 

  • Bevan DJ, Kramer DL (1987) The respiratory behavior of an air-breathing catfish, Clarias macrocephalus (Clariidae). Canadian Journal of Zoology 65:348–353

    Article  Google Scholar 

  • Branco LG, Glass ML, Wang T, Hoffman A (1993) Temperature and central chemoreceptor drive to ventilation in toad (Bufo paracnemis) Respiration Physiology 93(3):337–346

    Article  PubMed  CAS  Google Scholar 

  • Brinkmann H, Denk A, Zitzle J, Joss JMP, Meyer A (2004) Complete mitochondrial genome sequence of the South American and the Australian lungfish: testing of the phylogenetic performance of mitochondrial data sets for phylogenetic problems in tetrapod relationships. Journal of Molecular Evolution 59:834–848

    Article  PubMed  CAS  Google Scholar 

  • Burleson ML, Milsom WK (1990) Propanol inhibits O2-sensitive chemoreceptor activity in trout gills. American Journal of Physiology 27:R1089–R1091

    Google Scholar 

  • Burleson ML, Milsom WK (2005a) Cardio-ventilatory control in rainbow trout: I. Pharmocology of branchial oxygen-sensitive chemoreceptors. Respiration Physiology 100:231–238

    Article  Google Scholar 

  • Burleson ML, Milsom WK (2005b) Cardio-ventilatory control in rainbow trout: II. Reflex effects of exogeneous neurochemicals. Respiration Physiology 101:289–299

    Article  Google Scholar 

  • Carroll RL (1987) Vertebrate Palaeontology and Evolution. Freeman, New York

    Google Scholar 

  • Clack JA (2007) Devonian climate change, breathing, and the origin of the tetrapod stem group. Integrative and Comparative Biology Advanced access 47:510–523

    Article  Google Scholar 

  • Daniels CB, Orgeig S, Sullivan LC, Ling N, Bennett MB, Schürch AL, Braunder CJ (2004) The origin and evolution of the surfactant system in fish: insights into the evolution of lungs and swimbladders. Physiological and Biochemical Zoology 77(5):732–749

    Article  PubMed  Google Scholar 

  • da Silva GSF, Sanchez AP, Giusti H, Amin-Naves J, Glass ML (2006) Control of pulmonary ventilation in the lungfish Lepidosiren paradoxa: The effects of temperature and hypoxia. First International Congress of Respiratory Biology. Abstracts pp 94–95

    Google Scholar 

  • Dehadrai PV, Tripathi SD (1976) Environment and and ecology of freshwater breathing teleost, In: GM Hughes ed. Respiration of Amphibious Vertebrates. 1st Ed. Academic, London, pp 39–72

    Google Scholar 

  • Dejours P (1981) Principles of Comparative Respiratory Physiology. 2nd revision. Elsevier, Amsterdam

    Google Scholar 

  • Delaney RG, Laurent P, Galante R, Pack AI, Fishman AP (1983) Pulmonary mecanoreceptors in the dipnoi lungfish Protopterus and Lepidosiren. American Journal of Physiology 244:R418–R428

    PubMed  CAS  Google Scholar 

  • Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: The innovation of oxygenic photosynthesis. Proceedings of the National Academy of Sciences 98:2170–2175

    Article  CAS  Google Scholar 

  • Donnelly BG (1973) Aspects of behavior in the catfish Clarias gariepinus (Pices: Clariidae), during periods of habitat desiccation. Arnoldia 6(9):1–8

    Google Scholar 

  • Dudley R (1998) Atmospheric O2, giant Paleozoic insects and the evolution of aerial locomotor performance. Journal of Experimental Biology 201:1043–1050

    PubMed  CAS  Google Scholar 

  • Eddy FB (1974) Blood gases in the tench (Tinca tinca) in well aerated and oxygen deficient water. Journal of Experimental Biology 60:71–83

    Google Scholar 

  • Edwards RRC (1971) An assessment of the energy cost of in gill ventilation in the plaice (Pleuronectes platessa L). Comparative Biochemistry and Physiology 40:391–398

    Article  PubMed  CAS  Google Scholar 

  • Farmer CG, Jackson DC (1998) Air-breathing during activity in the fishes Amia calva and Lepisosteus oculatus. Journal of Experimental Biology 201:943–948

    PubMed  Google Scholar 

  • Fernandes MN, Rantin FT (1994) Relationship between oxygen availability and metabolic cost of breathing in Nile tilapia (Oreochromis niloticus): aquacultural consequences. Aquaculture 127:339–346

    Article  Google Scholar 

  • Filleul A, Lavoué S (2001) Basal teleosts and the question of elopomorph monophyly. Morphological and molecular approaches. Comptes rendus de l'Académie des Sciences. Série III, Sciences de la vie 324(4):393–399

    CAS  Google Scholar 

  • Florindo LH, Leite CAC, Kalinin AL, Reid AG, Milsom WK, Rantin FT (2006) The role of branchial and orobranchial O2 chemoreceptors in the control of aquatic surface respiration in the neotropical fish tambaqui (Colossoma macroporum): progressive responses to prolonged hypoxia. Journal of Experimental Biology 209:1709–1715

    Article  PubMed  Google Scholar 

  • Frick NT, Brystriansky JS, Ballantyne JS (2007) The metabolic organization of a primitive air-breathing fish, the Florida gar (Lepisosteus platyrhincus). Journal of Experimental Zoology 307A:7–17

    Article  CAS  Google Scholar 

  • Gervais RG, Tufs BL (1998) Evidence for membrane bound carbonic anhydrase in the air bladder of bowfin (Amia calva), a primitive air-breathing fish. Journal of Experimental Biology 201:2205–2212

    PubMed  CAS  Google Scholar 

  • Gilmour KM, Perry SF (1994) The effects of hypoxia, hyperoxia or hypercapnia on the acid-base disequilibrium in arterial blood of rainbow trout. Journal of Experimental Biology 192:269–284

    PubMed  Google Scholar 

  • Gilmour KM, Milsom WK, Rantin FT, Reid SG, Perry SF (2005) Cardiorespiratory responses to hypercarbia in tambaqui Colossoma macropomum: chemoreceptor orientation and specificity. Journal of Experimental Biology 208(Pt 6):1095–1107

    Article  PubMed  CAS  Google Scholar 

  • Gilmour KM, Euverman, Esbaugh RM, Kenney AJ, Chew LSF, Ip YK, Perry SF. (2007) Mechanisms of acid-base regulation in the African lungfish Protopterus annectens. Journal of Experimental Biology 210:1944–1959

    Article  PubMed  CAS  Google Scholar 

  • Glass ML, Boutilier RG, Heisler N (1983) Ventilatory control of arterial PO2 in the turtle Chrysemys picta bellii: Effects of temperature and hypoxia. Journal of Comparative Physiology 151:145–153

    Google Scholar 

  • Glass ML, Ishimatsu A, Johansen K. (1986) Responses of aerial ventilation to hypoxia and hypercapnia. Journal of Comparative Physiology B 156:425–430

    Article  Google Scholar 

  • Glass ML, Andersen NA, Kruhøffer M, Williams EM, Heisler N (1990) Combined effects of environmental O2 and temperature and gases in carp (Cyprinus carbio). Journal of Experimental Biology 148:1–17

    Google Scholar 

  • Graham JB (1997) Air-Breathing fishes: Evolution, Diversity and Adaptation. Academic, San Diego

    Google Scholar 

  • Graham JB, Baird TA (1982) The transition to air breathing in fishes. I. Environmental effects on the facultative air breathing of Ancistrus chagresi and Hypostomus plecostomus (Loricariidae). Journal of Experimental Biology 96:53–67

    Google Scholar 

  • Greenwood PH (1961) A revision of genus Dinotopterus BLGR. (Pisces, Clariidae) with notes on the comparative anatomy of the suprabranchial organs in the Clariidae. Bulletin of the British museum 7:215–241

    Google Scholar 

  • Hedrick MS, Jones DR (1999) Control of gill ventilation and air-breathing in the bowfin Amia calva. Journal of Experimental Biology 202:87–94

    PubMed  Google Scholar 

  • Hedrick MS, Burleson ML, Jones DR, Milsom WK (1991) An examination of central chemosensitivity in the air-breathing fish (Amia calva). Journal of Experimental Biology 155:165–174

    Google Scholar 

  • Hedrick MS, Katz SL, Jones DR (1994) Periodic air breathing behaviour in a primitive fish revealed by spectral analysis. Journal of Experimental Biology 197:249–436

    Google Scholar 

  • Heisler N, Claiborne JB (1986) Acid-base regulation and ion transfers in the carp (Cyprinus carbio) PH compensation during graded long- and short-term environmental hypercapnia, and the effects of bicarbonate infusion. Journal of Experimental Biology 126:41–61

    PubMed  Google Scholar 

  • Hora SL (1935) Physiology, bionomics, and evolution of air-breathing fishes of India. Transnational Institute of Science of India 1:1–16

    Google Scholar 

  • Hughes GM, Saunders RL (1970) Responses of respiratory pumps to hypoxia in the rainbow trout (Salmo gairdneri). Journal of Experimental Biology 53:529–545

    PubMed  CAS  Google Scholar 

  • Hughes GM, Shelton G (1962) Respiratory mechanisms and their nervous control in fish. In: Löwenstein O (ed) Advances in Comparative Physiology and Biochemistry Volume I. Academic, London, pp 275–364

    Google Scholar 

  • Jordan (1976) The influence of body weight on gas exchange in the air-breathing fish, Clarias batrachus. Comparative Biochemistry Physiology 53(A):305–310

    Article  CAS  Google Scholar 

  • Junk WJ (1984) Ecology of the varzea, floodplain of Amazonian whitewater rivers. In: Sioli H (ed) The Amazon: Limnology and Landscape Ecology of a Mighty Tropical River and its Basin. W. Junk, Dordrecht, pp 215–244

    Google Scholar 

  • Kind PK, Grigg GC, Booth DT (2002) Physiological responses to prolonged aquatic hypoxia in the Quensland lungfish. Neoceratodus forsteri. Respiratory Physiology and Neurology 132:179–190

    Article  Google Scholar 

  • Kramer DL (1978) Ventilation of the respiratory gas bladder in Hoplerythrinus unitaeniatus (Pisces, Characoidei, Erytrhinidae). Canadian Journal of Zoology 56:931–938

    Article  Google Scholar 

  • Kramer DL, Lindsey CC, Moodie GEE, Stevens ED (1978) The fishes and aquatic environment of the central Amazon basin, with particular reference to respiratory patterns. Canadian Journal of Zoology 56:717–729

    Article  Google Scholar 

  • Kruhøffer M, Glass ML, Abe AS, Johansen K (1987) Control of breathing in an amphibian Bufo paracnemis: effects of temperature and hypoxia. Respiration Physiology 69(2):267–275

    Article  PubMed  Google Scholar 

  • Kramer DL, McClure M (1982) Aquatic surface respiration, a widespread adaptation to hypoxia in tropical fresh water fishes. Environmental Biology of Fish 7:47–55

    Article  Google Scholar 

  • Lomholt JP,Glass ML (1987) Gas exchange of air-breathing fishes in near anoxic water. Acta Physiologica Scandinavica 129:45A

    Google Scholar 

  • Lomholt JP, Johansen K (1979) Hypoxia in carp: How it affects O2 uptake, ventilation and extraction from water. Physiological Zoology 52:38–49

    Google Scholar 

  • Lopes JM (2003) Localização e orientação dos quimiorreceptores de O2 envolvidos no controle dos reflexos cardio-respiratórios e da respiração aérea de jeju, Hoplerythrinus unitaeniatus (Teleostei, Erytrhinidae) em resposta à hipóxia ambiental. PhD Thesis, Federal University of São Carlos, SP, Brazil

    Google Scholar 

  • Magid AMA (1971) The ability of Clarias lazera (Pices) to survive without air-breathing. Journal of Zoology (London) 163:63–72

    Article  Google Scholar 

  • Magid AMA, Vokac Z, Ahmed NED (1970) Respiratory function of the swim-bladders of the primitive fish Polypterus senegalus. Journal of Experimental Biology 52:27–37

    Google Scholar 

  • Mattias AT, Rantin FT, Fernandes MN (1998) Gill respiratory parameters during progressive hypoxia in the facultative air-breathing fish, Hypostomus regani (Loricariidae). Comparative biochemistry and physiology 120(A):311–315

    Google Scholar 

  • Milsom WK (2002) Phylogeny of CO2/H+ chemoreception in vertebrates. Respiratory Physiology and Neurobiology 131:29–41

    Article  PubMed  CAS  Google Scholar 

  • Moraes MFPG, Fernandes MN, Höller S, Costa OPF, Glass ML, Perry SF (2005) Morphometric comparison of the respiratory organs of the South American lungfish Lepidosiren paradoxa (Dipnoi). Physiological and Biochemical Zoology 78:546–559

    Article  PubMed  Google Scholar 

  • Munshi JSD (1976) Gross and fine structure of respiratory organs of air-breathing fishes. In: Hughes GM (ed) Respiration of Amphibious Vertebrates. Academic, London, pp 73–104

    Google Scholar 

  • Nelson JA, Rios FS, Sanches JR, Fernandes MN, Rantin FT (2007) Environmental influences on the respiratory physiology and gut chemistry of a facultative air-breathing, tropical herbivorous fish Hypostomus regani (Ihering, 1905). In: Fernandes MN, Rantin FT, Glass ML, Kapoor BG (eds) Fish Respiration and Environment. Science Publishers. Enfield, NH, USA, pp 191–219

    Chapter  Google Scholar 

  • Oliveiro RD, Lopes JM, Sanchez JR, Kalinin AL, Glass ML, Rantin FT (2004) Cardio-respiratory responses of the facultative air-breathing fish jeju, Hoplerythrinus unitaeniatus (Teleostei, Erythrinidae), exposed to graded ambient hypoxia. Comparative Biochemistry and Physiology A 139: 479–485

    Article  Google Scholar 

  • Perry SF (2007) Swimbladder-lung homology in basal osteichthyes revisited. In: Fernandes MN, Rantin FT, Glass ML, Kapoor BG (eds) Fish Respiration and the Environment. Science Publishers, Enfield, NH, USA, pp 41–55

    Chapter  Google Scholar 

  • Perry SF, Reid SG, Gilmour KM, Boijink CL, Lopes JM, Milsom WK, Rantin FT (2004) A comparison of adrenergic stress responses in three tropical teleosts exposed to acute hypoxia. American Journal of Physiology (Regul Integr Comp Physiol) 287(1):R188–97

    Article  CAS  Google Scholar 

  • Piiper J, Scheid P (1992) Modelling of gas exchange in vertebrate lungs, gills and skin. In: Wood SC, Weber RE, Hargens A, Millard, RW (eds) Physiological Adaptations in Vertebrates. Marcel Dekker, New York, pp 69–97

    Google Scholar 

  • Podkawa D, Goniakowska-Witalinska (2003) Morphology of the air-breathing stomach of the catfish Hypostomus plecostomus. Journal of Morphology 257:147–163

    Article  Google Scholar 

  • Randall DJ, Taylor EW (1991) Evidence for a role of catecholamines in the control of breathing in fish. Reviews in Fish Biology and Fisheries 1:139–157

    Article  Google Scholar 

  • Rantin FT, Johansen K (1984) Responses of the teleost Hoplias malabaricus to hypoxia. Environmental Biology of Fishes 11:275–288

    Article  Google Scholar 

  • Rantin FT, Kalinin AL, Glass ML, Fernandes MN (1992) Respiratory responses to hypoxia in relation to mode of life of two erythrinid species (Hoplias malabaricus and Hoplias lacerdae). Journal of Fish Biology 41:805–812

    Article  Google Scholar 

  • Rantin FT, Del Rosario Guerra C, Kalinin AL, Glass ML (1998) The influence of aquatic surface respiration (ASR) on cardio-respiratory function of the serrasalmid fish Piaractus mesopotamicus. Comparative Biochemistry and Physiology A 119:991–997

    Article  Google Scholar 

  • Sanchez AP, Glass ML (2001) Effects of environmental hypercapnia on pulmonary ventilation of the South American lungfish. Journal of Fish Biology 58:1181–1189

    Article  Google Scholar 

  • Sanchez AP, Hoffman A, Rantin FT, Glass ML (2001) The relationship between pH of the cerebro-spinal fluid and pulmonary ventilation of the South American lungfish, Lepidosiren paradoxa. Journal of Experimental Zoology 290:421–425

    Article  PubMed  CAS  Google Scholar 

  • Saint-Paul U (1988) Diurnal routine O2 consumption at different O2 concentration by Calossoma macroporum and Colossoma brachyporum. Comparative biochemistry and physiology 89A:675–682

    Google Scholar 

  • Saint-Paul U, Bernardino G (1988) Behavioral and ecomorphological responses of neotropical pacu Piaractus mesopotamicus (Teleostei, Serrasalmidae) to oxygen-deficient waters. Experimental Biology 48:19–26

    PubMed  CAS  Google Scholar 

  • Salvo-Souza RH, Soncini R, Glass ML, Sanches JR, Rantin FT (2001) Ventilation, gill perfusion and blood gases in dourado, Salminus maxillosus Valenciennes (Teleostei, Characidae) exposed to graded hypoxia. Journal of Comparative Physiology B 171:483–862

    Article  Google Scholar 

  • Schumann D, Piiper J (1966) Der Sauerstoffbedarf der Atmung bei Fischen nach Messungen an der narkotisierten Schleie, Tinca tinca. Pflügers Archiv für gesamte physiologie 288:15–26

    Article  CAS  Google Scholar 

  • Schurmann H, Steffensen JF (1994) Spontaneous swimming activity of the Atlantic cod Gadus morhua, exposed to graded hypoxia at three temperatures. Journal of Experimental Biology 197:129–142

    PubMed  Google Scholar 

  • Scott AC, Glasspool IJ (2006) The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proceedings of the National Academy of Sciences 103(29):10861–10865

    Article  CAS  Google Scholar 

  • Singh BN, Hughes GM (1971) Respiration of an air-breathing catfish Clarias batrachus (Linn.). Journal of Experimental Biology 55:421–434

    PubMed  CAS  Google Scholar 

  • Singh BR, Mishra AP, Sheel M, Singh I (1982) Development of the air-breathing organ in the cat fish, Clarias batrachus (Linn.). Zoologischer Anzeiger, 208:100–111

    Google Scholar 

  • Smatresk NJ, Cameron JN (1982) Respiration and acid-base physiology of the spotted gar, a bimodal breather. I. Normal values, and the response to hypoxia. Journal of Experimental Biology 96:263–280

    Google Scholar 

  • Smatresk NJ, Burleson ML, Azizi SQ (1987) Chemoreflexive responses to hypoxia and NACN on longnose gar: evidence for two chemoreceptor loci. American Journal of Physiology 251(1pt 2):R1116–125

    Google Scholar 

  • Stearns SC, Hoekstra RF (2005) Evolution — an introduction: 2nd edition. Oxford University Press, Oxford

    Google Scholar 

  • Steffensen JF, Lomholt JP (1983) Energetic cost of branchial ventilation in the sharksucker, Echeneis naucrates. Journal of Experimental Biology 103:185–192

    PubMed  CAS  Google Scholar 

  • Stevens ED, Holeton GF (1978) The partitioning of oxygen uptake from air and from water by erythrinids. Canadian Journal of Zoology 56:965–969

    Article  Google Scholar 

  • Soncini R, Glass ML (1997) The effects of temperature and hyperoxia on arterial PO2 and acid-base status in Piaractus mesopotamicus (Holmberg). Journal of Fish Biology 51:225–233

    Google Scholar 

  • Soncini R, Glass ML (2000) Oxygen and acid-base related drives to gill ventilation in carp. Journal of Fish Biology 56:528–541

    Article  Google Scholar 

  • Takasusuki J, Fernandes MN, Severi W (1998) The occurrence of aerial respiration in Rhinelepis strigosa during progressive hypoxia. Journal of Fish Biology 52:369–379

    Google Scholar 

  • Takezawa J, Miller FJ, O'Neil JJ (1980) Single-breath diffusing capacity and lung volumes in small laboratory mammals. Journal of Applied Physiology 48(6):1052–1059

    PubMed  CAS  Google Scholar 

  • Toyama Y, Ichimiya T, Kasama-Yoshida H, Cao Y, Hasegava M, Kojima H, Tamai Y, Kurihari T (2000) Phylogenetic relation of lungfish indicated by the amino acid sequence of myelin DM20. Molecular Brain Research 8:256–259

    Article  Google Scholar 

  • Tuurala H, Pärt P, Nikinmaa M, Soivio A (1984) The basal channels of secundary lamellae in Salmo gairdneri gills — a non-respiratory shunt. Journal of Comparative Physiology 79A:35–39

    Google Scholar 

  • Val AL, Almeida-Val VMF (1995) Fishes of the Amazon and their environments. Physiological and biochemical features. Springer, Heidelberg, 224 pp

    Google Scholar 

  • Wilson RJA, Harris MB, Remmers JE, Perry SF (2000) Evolution of air-breathing and central CO2/H+-respiratory chemosensitivity: new insights from an old fish? Journal of Experimental Biology 203:3505–3512

    PubMed  CAS  Google Scholar 

  • Zhu M, Yu X (2002) A primitive fish close to the common ancestor of tetrapods and lungfish. Nature 418:767–770

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Supported by Fundação de Amparo de Pesquisa do Estado de São Paulo (FAPESP) and from Conselho Nacional de Desenvolvimento Científico e Técnologico (CNPq) and Fundação de Apoio ao Ensino, Pesquisa e Assistência do Hospital das Clínicas da FMRP-USP (FAEPA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Glass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Glass, M.L., Rantin, F.T. (2009). Gas Exchange and Control of Respiration in Air-Breathing Teleost Fish. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_5

Download citation

Publish with us

Policies and ethics