Skip to main content

Prenatal Development of Cardiovascular Regulation in Avian Species

  • Chapter
  • First Online:
Cardio-Respiratory Control in Vertebrates

Abstract

The pulsatile rhythm of the avian embryonic heart is not under autonomic control until late in development, nor are the blood vessels that nourish the different vascular beds of the growing embryo and fetus. Thus, during early development cardiovascular control is mostly dependent on the release of local or systemic vasoactive and cardioactive molecules. It is only in late development that the rapid reflex regulatory mechanisms that characterize adult cardiovascular control start functioning. The current review focuses on how the transition from an aneural cardiovascular system to a neural adult-like system occurs in the chicken fetus, which is the best (and at times the only) known avian species. First, we review the appearance of the different molecular components of a regulatory loop, i.e., nerve fibers, neurotransmitters or receptors. Second, we take a look at the functional integration and maturation of the different afferent and efferent pathways. Third and last, we offer a general overview of humoral and local effectors of cardiovascular control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

αAR:

α adrenoceptor

ACE:

Angiotensin converting enzyme

ANP:

Atrial natriuretic peptide

AT:

Angiotensin II

AT1R:

Angiotensin type 1 receptor

AT2R:

Angiotensin type 2 receptor

βAR:

β adrenoceptor

BDNF:

Brain-derived neurotrophic factor

BNP:

B-type natriuretic peptide

BRS:

Baroreflex sensitivity

cAMP:

Cyclic adenosine monophosphate

cGMP:

Cyclic guanosine monophosphate

CAM:

Chorioallantoic membrane

CNP:

C-type natriuretic peptide

CNS:

Central nervous system

CO:

Carbon monoxide

CPI-17:

Protein kinase c potentiated inhibitor protein-17 kDa

DA:

Ductus arteriosus

EC50 :

Half maximal effective concentration

EHDF:

Endothelium-derived hyperpolarizing factor

ET-1:

Endothelin-1

ETC:

Electron transport chain

HH:

Hamburger-Hamilton stage

HPV:

Hypoxic pulmonary vasoconstriction

MLC20 :

Myosin light chain

MLCK:

Ca2+-calmodulin-dependent myosin light chain kinase

MLCP:

Myosin light chain phosphatase

NO:

Nitric oxide

NP:

Natriuretic peptide

PGE2 :

Prostaglandin E2

PGI2 :

Prostaglandin I2

PKC:

Protein kinase C

pO2 :

Partial pressure of oxygen

ROS:

Reactive oxygen species

sGC:

Soluble guanylate cyclase

SNP:

Sodium nitroprusside

References

  • Aaronson PI, Robertson TP, Knock GA, Becker S, Lewis TH, Snetkov V, Ward JP (2006) Hypoxic pulmonary vasoconstriction: mechanisms and controversies. Journal of Physiology — London 570:53-58

    CAS  Google Scholar 

  • Abman SH (1999) Abnormal vasoreactivity in the pathophysiology of persistent pulmonary hypertension of the newborn. Pediatrics in Review 20:e103-e109

    PubMed  CAS  Google Scholar 

  • Abman SH, Chatfield BA, Hall SL, McMurtry IF (1990) Role of endothelium-derived relaxing factor during transition of pulmonary circulation at birth. American Journal of Physiology — Heart and Circulatory Physiology 259:H1921-H1927

    CAS  Google Scholar 

  • Abman SH, Chatfield BA, Rodman DM, Hall SL, McMurtry IF (1991) Maturational changes in endothelium-derived relaxing factor activity of ovine pulmonary arteries in vitro. American Journal of Physiology — Lung Cellular and Molecular Physiology 260:L280-L285

    CAS  Google Scholar 

  • Ábrahám A (1969) Microscopic Innervation of the Heart and Blood Vessels in Vertebrates Including Man. Pergamon Press, Oxford

    Google Scholar 

  • Aceto JF, Baker KM (1990) [Sar] angiotensin II receptor-mediated stimulation of protein synthesis in chick heart cells. American Journal of Physiology - Heart and Circulatory Physiology 258:H806-H813

    CAS  Google Scholar 

  • Adair TH, Montani J-P, Strick DM, Guyton AC (1989) Vascular development in chick embryos, a possible role for adenosine. American Journal of Physiology - Heart and Circulatory Physiology 256:H240-H246

    CAS  Google Scholar 

  • Agren P, Van Der Weerden M, Kessels CG, Altimiras J, De Mey JG, Blanco CE, Villamor E (2005) Response of chicken embryo ductus arteriosus to NO/cyclic GMP- and cyclic AMP-mediated relaxation. Pediatric Research 58:354

    Google Scholar 

  • Agren P, Cogolludo AL, Kessels CGA, Pérez-Vizcaíno F, De Mey JGR, Blanco CE, Villamor E (2007) Ontogeny of chicken ductus arteriosus response to oxygen and vasoconstrictors. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology 292:R485-R495

    PubMed  CAS  Google Scholar 

  • Agren P, van der Sterren S, Cogolludo AL, Frazziano G, Blanco CE, Villamor E (2008) Developmental changes in endothelium-dependent relaxation of the chicken ductus arteriosus. Journal of Physiology and Pharmacology 59:55-76

    PubMed  CAS  Google Scholar 

  • Akiyama R, Matsuhisa A, Pearson JT, Tazawa H (1998). Noninvasive, long-term measurement of embryonic heart rate of the domestic fowl. An International Symposium on Cardiac Rhythms in Animals, Muroran, Japan, March, 1998

    Google Scholar 

  • Akizuki N, Kangawa K, Minamino N, Matsuo H (1991) Cloning and sequence analysis of complementary DNA encoding a precursor for chicken natriuretic peptide. FEBS Letters 280:357-362

    PubMed  CAS  Google Scholar 

  • Alexander RW, Dzau VJ (2000) Vascular biology: the past 50 years. Circulation 102:IV112-116

    PubMed  CAS  Google Scholar 

  • Altimiras J, Crossley DA, II (2000) Control of blood pressure mediated by baroreflex changes of heart rate in the chicken embryo (Gallus gallus). American Journal of Physiology 278:R980-R986

    PubMed  CAS  Google Scholar 

  • Altimiras J, Crossley DA II (2001) Involvement of α- and β-adrenergic receptors in the cardiovascular response to hypoxia in chicken embryos. Journal of Physiology London 533P:146P-147P

    Google Scholar 

  • Altimiras J, Crossley DA, II (2007) Attenuation of baroreflex gain in a growth restriction model in broiler chickens. FASEB Journal 21:A876

    Google Scholar 

  • Altimiras J, Lindgren I (2007) Effect of chronic hypoxia on beta-adrenoceptor density and cardiac contractile response to agonists during the last week of incubation in chicken fetuses. FASEB Journal 21:A1208

    Google Scholar 

  • Bagshaw RJ, Cox RH (1986) Baroreceptor control of heart rate in chickens. American Journal of Veterinary Research 47:293-295

    PubMed  CAS  Google Scholar 

  • Baker KM, Aceto JF (1990) Angiotensin II stimulation of protein synthesis and cell growth in chick heart cells. American Journal of Physiology — Heart and Circulatory Physiology 259:H610-H618

    CAS  Google Scholar 

  • Ballard VLT, Mikawa T (2002) Constitutive expression of preproendothelin in the cardiac neural crest selectively promotes expansion of the adventitia of the great vessels in vivo. Developmental Biology 251:167-177

    PubMed  CAS  Google Scholar 

  • Baragatti BBF, Barogi S, Laubach VE, Sodini D, Sheseli EG, Regan RF, Coceani F (2007) Interactions between NO, CO and an endothelium-derived hyperpolarizing factor (EDHF) in maintaining patency of the ductus arteriosus in the mouse. British Journal of Pharmacology 151:54-62

    PubMed  CAS  Google Scholar 

  • Bergwerff M, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC (1996) Onset of elastogenesis and downregulation of smooth muscle actin as distinguishing phenomena in artery differentiation in the chick embryo. Anatomy and Embryology 194:545-557

    PubMed  CAS  Google Scholar 

  • Bergwerff M, DeRuiter MC, Gittenberger-de Groot AC (1999) Comparative anatomy and ontogeny of the ductus arteriosus, a vascular outsider. Anatomy and Embryology 200:559-571

    PubMed  CAS  Google Scholar 

  • Berry A (1950) The effects of epinephrine on the myocardium of the embryonic chick. Circulation 1:1362-1368

    Google Scholar 

  • Bertinieri G, Di Rienzo M, Cavallazzi A, Ferrari AU, Pedotti A, Mancia G (1985) A new approach to analysis of the arterial baroreflex. Journal of Hypertension 3:S79-S81

    PubMed  CAS  Google Scholar 

  • Bézie Y, Mesnard L, Longrois D, Samson F, Perret C, Mercadier J-J, Laurent S (1996) Interactions between endothelin-1 and atrial natriuretic peptide influence cultured chick cardiac myocyte contractility. European Journal of Pharmacology 311:241-248

    PubMed  Google Scholar 

  • Blanco CE, Dawes GS, Hanson MA, McCooke HB (1988) Carotid baroreceptors in fetal and newborn sheep. Pediatric Research 24:342-346

    PubMed  CAS  Google Scholar 

  • Blanco CE, Zoer B, Villamor E (2007). Effects of the Rho kinase inhibitor hydroxyfasudil in the reactivity of chicken embryo femoral arteries. In: PAS Meeting. Toronto, 2007

    Google Scholar 

  • Boels PJ, Deutsch J, Gao B, and Haworth SG (1999) Maturation of the response to bradykinin in resistance and conduit pulmonary arteries. Cardiovascular Research 44:416-428

    PubMed  CAS  Google Scholar 

  • Bowers PN, Tinney JP, and Keller BB (1996) Nitroprusside selectively reduces ventricular preload in the stage 21 chick embryo. Cardiovascular Research 31:E132-E138

    PubMed  CAS  Google Scholar 

  • Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, and Weston AH (2002) EDHF: bringing the concepts together. Trends in Pharmacological Sciences 23:374-380

    PubMed  CAS  Google Scholar 

  • Cheng Z, Powley TL, Schwaber JS, and Doyle FJ, III (1997) A laser confocal microscopic study of vagal afferent innervation of rat aortic arch: chemoreceptors as well as baroreceptors. Journal of the Autonomic Nervous System 67:1-14

    PubMed  CAS  Google Scholar 

  • Chess-Williams R, Austin CE, and O'Brien HL (1991) α-Adrenoceptors do not contribute to the chronotropic or inotropic responses of the avian heart to noradrenaline. Journal of Autonomic Pharmacology 11:27-35

    PubMed  CAS  Google Scholar 

  • Chiba Y, Fukuoka S, Niiya A, Akiyama R, and Tazawa H (2004) Development of cholinergic chronotropic control in chick (Gallus gallus domesticus) embryos. Comparative Biochemistry and Physiology A - Molecular and Integrative Physiology 137:65-73

    CAS  Google Scholar 

  • Clyman RI (2006) Mechanisms regulating the ductus arteriosus. Biology of the Neonate 89:330-335

    PubMed  Google Scholar 

  • Clyman RI, Mauray F, Heymann MA, Rudolph AM (1978) Ductus arteriosus: developmental response to oxygen and indomethacin. Prostaglandins 15:993-998

    PubMed  CAS  Google Scholar 

  • Cobeño L, Villamor E, Cogolludo A, Frazziano G, Moral J, Zoer B, Moreno L, Perez-Vizcaino F (2008) Role of voltage-gated potassium channels in the response to oxygen in chicken embryo ductus arteriosus. FASEB Journal 22:1224.1223-1224

    Google Scholar 

  • Cogolludo A, Agren P, van der Sterren S, Blanco C, Cobeno L, Frazziano G, Perez-Vizcaino F, Villamor E (2007a) Hydrogen peroxide mimics the responses to oxygen in chicken ductus arteriosus. FASEB Journal 21:A1171-a

    Google Scholar 

  • Cogolludo A, Moreno L, Villamor E (2007b) Mechanisms controlling vascular tone in pulmonary arterial hypertension: implications for vasodilator therapy. Pharmacology 79:65-75

    PubMed  CAS  Google Scholar 

  • Coraboeuf E, Obrecht-Coutris G, Le-Douarin G (1970) Acetylcholine and the embryonic heart. American Journal of Cardiology 25:285-291

    PubMed  CAS  Google Scholar 

  • Crossley DA, II (1999) Development of Cardiovascular Regulation in Embryos of the Domestic Fowl (Gallus gallus) with Partial Comparison to Embryos of the Desert Tortoise (Gopherus agassizii). University of North Texas, Denton

    Google Scholar 

  • Crossley DA, II Altimiras J (2000) Ontogeny of autonomic control of cardiovascular function in the domestic chicken Gallus gallus. American Journal of Physiology 279:R1091-R1098

    PubMed  CAS  Google Scholar 

  • Crossley DA, II, Bagatto BP, Dzialowski EM, Burggren WW (2003a) Maturation of cardiovascular control mechanisms in the embryonic emu (Dromiceius novaehollandiae). Journal of Experimental Biology 206:2703-2710

    PubMed  Google Scholar 

  • Crossley DA, II, Burggren WW, Altimiras J (2003b) Cardiovascular regulation during hypoxia in embryos of the domestic chicken Gallus gallus. American Journal of Physiology 284:R219-R226

    PubMed  CAS  Google Scholar 

  • Cullis WC and Lucas CLT (1936) Action of acetylcholine on the aneural chick heart. Journal of Physiology London 86 Suppl:53-55

    CAS  Google Scholar 

  • Donnelly DF (2005) Development of carotid body/petrosal ganglion response to hypoxia. Respiratory Physiology & Neurobiology 149:191-199

    Google Scholar 

  • Drummond HA, Price MP, Welsh MJ, Abboud FM (1998) A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21:1435-1441

    PubMed  CAS  Google Scholar 

  • Drummond HA, Welsh MJ, Abboud FM (2001) ENaC subunits are molecular components of the arterial baroreceptor complex. Annals of the New York Academy of Sciences 940:42-47

    PubMed  CAS  Google Scholar 

  • Dufour JJ, Posternak JM (1960) Effets chronotropes de l'acetylcholine sur le coeur d'embryon de poulet. Helvetica Physiologica et Pharmacologica Acta 18:563-580

    PubMed  CAS  Google Scholar 

  • Dunn LK, Gruenloh SK, Dunn BE, Reddy DS, Falck JR, Jacobs ER, Medhora M (2005) Chick chorioallantoic membrane as an in vivo model to study vasoreactivity: Characterization of development-dependent hyperemia induced by epoxyeicosatrienoic acids (EETs). The Anatomical Record 285:771-780

    PubMed  Google Scholar 

  • Dzialowski EM, Greyner H (2008) Maturation of the contractile response of the Emu ductus arteriosus. Journal of Comparative Physiology B 178:401-412

    Google Scholar 

  • Elfwing M (2007) The ontogeny of the baroreflex in domestic broiler chickens (Gallus gallus domesticus). (Master). Linköpings Universitet, Linköping

    Google Scholar 

  • Fingl E, Woodbury LA, Hecht MH (1952) Effects of innervation and drugs upon direct membrane potentials of embryonic chick myocardium. Journal of Pharmacology and Experimental Therapeutics 104:103-114

    PubMed  CAS  Google Scholar 

  • Freer RJ, Pappano AJ, Peach MJ (1976) Mechanism for the positive inotropic effect of angiotensin II on isolated cardiac mu. Circulation Research 39:178-183

    PubMed  CAS  Google Scholar 

  • Frieswick GM, Danielson T, Shideman FE (1979) Adrenergic inotropic responsiveness of embryonic chick and rat hearts. Developmental Neuroscience 2:276-285

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373-376

    PubMed  CAS  Google Scholar 

  • Ganitkevich V, Hasse V, Pfitzer G (2002) Ca2+-dependent and Ca2+-independent regulation of smooth muscle contraction. Journal of Muscle Research and Cell Motilility 23:47-52

    CAS  Google Scholar 

  • Girard H (1973) Adrenergic sensitivity of circulation in the chick embryo. American Journal of Physiology 224:461-469

    PubMed  CAS  Google Scholar 

  • Groenendijk BCW, Hierck BP, Vrolijk J, Baiker M, Pourquie MJBM, Gittenberger-de Groot AC, Poelmann RE (2005) Changes in shear stress-related gene expression after experimentally altered venous return in the chicken embryo. Circulation Research 96:1291-1298

    PubMed  CAS  Google Scholar 

  • Groenendijk BCW, Stekelenburg-De Vos S, Vennemann P, Wladimiroff JW, Nieuwstadt FTM, Lindken R, Westerweel J, Hierck BP, Ursem NTC, Poelmann RE (2007) The endothelin-1 pathway and the development of cardiovascular defects in the haemodynamically challenged chicken embryo. Journal of Vascular Research 45:54-68

    PubMed  Google Scholar 

  • Guimaraes S, Moura D (2001) Vascular adrenoceptors: an update. Pharmacological Reviews 53:319-356

    PubMed  CAS  Google Scholar 

  • Guyton AC (1991) Blood pressure control — special role of the kidneys and body fluids. Science 252:1813-1816

    PubMed  CAS  Google Scholar 

  • Guyton AC, Coleman TG, Granger HJ (1972) Circulation: overall regulation. Annual Review of Physiology 34:13-46

    PubMed  CAS  Google Scholar 

  • Hall CE, Hurtado R, Hewett KW, Shulimovich M, Poma CP, Reckova M, Justus C, Pennisi DJ, Tobita K, Sedmera D, Gourdie RG, Mikawa T (2004) Hemodynamic-dependent patterning of endothelin converting enzyme 1 expression and differentiation of impulse-conducting Purkinje fibers in the embryonic heart. Development 131:581-592

    PubMed  CAS  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. Journal of Morphology 88:49-92

    Google Scholar 

  • Haque MA, Hou P-CL, Tazawa H (1995) Pharmacological approaches to autonomic control of heart rate in chick embryos residing inside eggshell. Physiological Zoology 68:74

    Google Scholar 

  • Harrison TA, Stadt HA, Kirby ML (1994) Developmental characteristics of the chick nodose ganglion. Developmental Neuroscience 16:67-73

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Nishimura H, Khosla M (1993) Angiotensin II-induced endothelium-dependent relaxation of fowl aorta. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology 264:R903-R911

    CAS  Google Scholar 

  • Hedlund K-O, Ebendal T (1980) The chick embryo nodose ganglion: effects of nerve growth factor in culture. Journal of Neurocytology 9:665-682

    PubMed  CAS  Google Scholar 

  • Higgins D, Pappano AJ (1979) A histochemical study of the ontogeny of catecholamine-containing axons in the chick embryo heart. Journal of Molecular and Cellular Cardiology 11:661-668

    PubMed  CAS  Google Scholar 

  • Higgins D, Pappano AJ (1981) Developmental changes in the sensitivity of the chick embryo ventricle to β-adrenergic agonist during adrenergic innervation. Circulation Research 48:245-253

    PubMed  CAS  Google Scholar 

  • Hoffman LE, Van Mierop LHS (1971) Effect of epinephrine on heart rate and arterial blood pressure of the developing chick embryo. Pediatric Research 5:472-477

    CAS  Google Scholar 

  • Hong Z, Hong F, Olschewski A, Cabrera JA, Varghese A, Nelson DP, Weir EK (2006) Role of store-operated calcium channels and calcium sensitization in normoxic contraction of the ductus arteriosus. Circulation 114:1372-1379

    PubMed  CAS  Google Scholar 

  • Houweling AC, Somi S, Massink MP, Groenen MA, Moorman AF, Christoffels VM (2005) Comparative analysis of the natriuretic peptide precursor gene cluster in vertebrates reveals loss of ANF and retention of CNP-3 in chicken. Developmental Dynamics 233:1076-1082

    PubMed  CAS  Google Scholar 

  • Hoyt DF (1979) Osmoregulation by avian embryos: the allantois functions like a toad's bladder. Physiological Zoology 52:354-362

    CAS  Google Scholar 

  • Hsu F-Y (1933) The effect of adrenaline and acetylcholine on the heart rate of the chick embryo. Chinese Journal of Physiology 7:243-252

    CAS  Google Scholar 

  • Höchel J, Akiyama R, Masuko T, Pearson JT, Nichelmann M, Tazawa H (1998) Development of heart rate irregularities in chick embryos. American Journal of Physiology 275:H527-H533

    PubMed  Google Scholar 

  • Jones DR (1973) Systemic arterial baroreceptors in ducks and the consequences of their denervation on some cardiovascular responses to diving. Journal of Physiology - London 234:499-518

    CAS  Google Scholar 

  • Jones DR and Johansen K (1972) The blood vascular system of birds. In: Avian Biology. Academic Press, New York, pp 157-285

    Google Scholar 

  • Kajimoto H, Hashimoto K, Bonnet SN, Haromy A, Harry G, Moudgil R, Nakanishi T, Rebeyka I, Thebaud B, Michelakis ED, Archer SL (2007) Oxygen activates the Rho/Rho-kinase pathway and induces RhoB and ROCK-1 expression in human and rabbit ductus arteriosus by increasing mitochondria-derived reactive oxygen species: a newly recognized mechanism for sustaining ductal constriction. Circulation 115:1777-1788

    PubMed  CAS  Google Scholar 

  • Kameda Y (1990) Ontogeny of the carotid body and glomus cells distributed in the wall of the common carotid artery and its branches in the chicken. Cell and Tissue Research 261:525-537

    PubMed  CAS  Google Scholar 

  • Kameda Y (1994) Electron microscopic study on the development of the carotid body and glomus cell groups distributed in the wall of the common carotid artery and its branches in the chicken. Journal of Comparative Neurology 348:544-555

    PubMed  CAS  Google Scholar 

  • Kameda Y (2002) Carotid body and glomus cells distributed in the wall of the common carotid artery in the bird. Microscopy Research and Technique 59:196-206

    PubMed  Google Scholar 

  • Kato K, Moriya K, Dzialowski E, Burggren WW, Tazawa H (2002) Cardiac rhythms in prenatal and perinatal emu embryos. Comparative Biochemistry and Physiology A - Molecular and Integrative Physiology 131:775-785

    CAS  Google Scholar 

  • Kempf H, Corvol P (2001) Angiotensin receptor(s) in fowl. Comparative Biochemistry and Physiology 128:77-88

    PubMed  CAS  Google Scholar 

  • Kempf H, Linares C, Corvol P, Gasc J-M (1998) Pharmacological inactivation of the endothelin type A receptor in the early chickembryo: a model of mispatterning of the branchial arch derivatives. Development 125:4931-4941

    PubMed  CAS  Google Scholar 

  • Kirby ML, McKenzie JW, Weidman TA (1980) Developing innervation of the chick heart: a histoflourescence and light microscopic study of sympathetic innervation. The Anatomical Record 196:333-340

    PubMed  CAS  Google Scholar 

  • Kitazawa T, Polzin AN, Eto M (2004) CPI-17-deficient smooth muscle of chicken. Journal of Physiology - London 557:515-528

    CAS  Google Scholar 

  • Koide M, Tuan R (1989) Adrenergic regulation of calcium-deficient hypertension in chick embryos. American Journal of Physiology 257:H1900-H1909

    PubMed  CAS  Google Scholar 

  • Koide M, E. AR, Harayama H, Yasui K, Yokota M, Tuan RS (1996) Atrial natriuretic peptide accelerates proliferation of chick embryonic cardiomyocytes in vitro. Differentiation 61:1-11

    PubMed  CAS  Google Scholar 

  • Kuo ZY (1937) Ontogeny of embryonic behavior in aves. XI. Respiration in the chick embryo. Journal of Comparative Psychology 24:49-58

    Google Scholar 

  • Kuratani S, Tanaka S (1990) Peripheral development of the avian vagus nerve with special reference to the morphological innervation of heart and lung. Anatomy and Embryology 182:435-446

    PubMed  CAS  Google Scholar 

  • Larsen WJ (2001) Human Embryology. Churchill Livingstone, New York

    Google Scholar 

  • Laude D, Elghozi J-L, Girard A, Bellard E, Bouhaddi M, Castiglioni P, Cerutti C, Cividjian A, Di Rienzo M, Fortrat J-O, Janssen BJA, Karemaker JM, Lefthériotis G, Parati G, Persson PB, Porta A, Quintin L, Regnard J, Rüdiger H, Stauss HM (2004) Comparison of various techniques used to estimate spontaneous baroreflex sensitivity (the EuroBaVar study). American Journal of Physiology — Regulatory, Integrative and Comparative Physiology 286:R226-R231

    PubMed  CAS  Google Scholar 

  • Le Noble FAC, Hekking JWM, Van Straaten HWM, Slaaf DW, Boudier HAJS (1991) Angiotensin II stimulates angiogenesis in the chorio-allantoic membrane of the chick embryo. European Journal of Pharmacology 195:305-306

    PubMed  CAS  Google Scholar 

  • Le Noble FAC, Schreurs NHJS, Van Straaten HWM, Slaaf DW, Smits JFM, Rogg H, Struijker-Boudier HAJ (1993) Evidence for a novel angiogensin II receptor involved in angiogenesis in chick embryo chorioallantoic membrane. American Journal of Physiology 264:R460-R465

    PubMed  CAS  Google Scholar 

  • Le Noble FAC, Ruijtenbeek K, Gommers S, De Mey JGR, Blanco CE (2000) Contractile and relaxing reactivity in carotid and femoral arteries of chicken embryos. American Journal of Physiology 278:H1261-H1268

    PubMed  CAS  Google Scholar 

  • Lenselink DR, Kuhlmann RS, Lowrence JM, Kolesari GL (1994) Cardiovascular teratogenicity of terbutaline and ritodrine in the chick embryo. American Journal of Obstetrics and Gynecology 171:501-506

    PubMed  CAS  Google Scholar 

  • Löffelholz K, Pappano AJ (1974) Increased sensitivity of sinoatrial pacemaker to acetylcholine and to catecholamines at the onset of autonomic neuroeffector transmission in chick embryo heart. Journal of Pharmacology and Experimental Therapeutics 191:479-486

    PubMed  Google Scholar 

  • Maloney JE, Cannata J, Dowling MH, Else W, Ritchie B (1977) Baroreflex activity in conscious fetal and newborn lambs. Biology of the Neonate 31:340-350

    PubMed  CAS  Google Scholar 

  • Martinez-Lemus LA, Hester RK, Becker EJ, Ramirez GA, Odom TW (2003) Pulmonary artery vasoactivity in broiler and Leghorn chickens: an age profile. Poultry Science 82:1957-1964

    PubMed  CAS  Google Scholar 

  • Mathew S, Mascareno E, Siddiqui MAQ (2004) A Ternary Complex of Transcription Factors, Nishéd and NFATc4, and Co-activator p300 Bound to an intronic sequence, intronic regulatory element, is pivotal for the up-regulation of myosin light chain-2v gene in cardiac hypertrophy. Journal of Biological Chemistry 279:41018-41027

    PubMed  CAS  Google Scholar 

  • McCarty LP, Lee WC, Shideman FE (1960) Measurement of the inotropic effects of drugs on the innervated and noninnervated embryonic chick heart. Journal of Pharmacology and Experimental Therapeutics 129:315-321

    CAS  Google Scholar 

  • Menna TM, Mortola JP (2002) Metabolic control of pulmonary ventilation in the developing chick embryo. Respiratory Physiology & Neurobiology 130:43-55

    Google Scholar 

  • Michelakis E, Rebeyka I, Bateson J, Olley P, Puttagunta L, Archer S (2000) Voltage-gated potassium channels in human ductus arteriosus. Lancet 356:134-137

    PubMed  CAS  Google Scholar 

  • Michelakis ED, Rebeyka I, Wu X, Nsair A, Thebaud B, Hashimoto K, Dyck JRB, Haromy A, Harry G, Barr AB, Archer SL (2002) O2 Sensing in the human ductus arteriosus: regulation of voltage-gated K+ channels in smooth muscle cells by a mitochondrial redox sensor. Circulation Research 91:478-486

    PubMed  CAS  Google Scholar 

  • Michelakis ED, Thebaud B, Weir EK, Archer SL (2004) Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells. Journal of Molecular and Cellular Cardiology 37:1119-1136

    PubMed  CAS  Google Scholar 

  • Moellera I, Small DH, Reed G, Harding JW, Mendelsohn FAO, Chaia SY (1996) Angiotensin IV inhibits neurite outgrowth in cultured embryonic chicken sympathetic neurones. Brain Research 725:61-66

    Google Scholar 

  • Moudgil R, Michelakis ED, Archer SL (2005) Hypoxic pulmonary vasoconstriction. Journal of Applied Physiology 98:390-403

    PubMed  CAS  Google Scholar 

  • Mulder ALM, Van Goor CA, Giussani DA, Blanco CE (2001) α-adrenergic contribution to the cardiovascular response to acute hypoxemia in the chick embryo. American Journal of Physiology 281:R2004-R2010

    PubMed  CAS  Google Scholar 

  • Murillo-Ferrol NL (1967) The development of the carotid body in Gallus domesticus. Acta Anatomica 68:102-126

    PubMed  CAS  Google Scholar 

  • Nakamura Y, Nishimura H, Khosla MC (1982) Vasodepressor action of angiotensin in conscious chickens. American Journal of Physiology — Heart and Circulatory Physiology 243:H456-H462

    CAS  Google Scholar 

  • Nakazawa M, Kajio F, Ikeda K, Takao A (1990) Effect of atrial natriuretic peptide on hemodynamics of the stage 21 chick embryo. Pediatric Research 27:557-560

    PubMed  CAS  Google Scholar 

  • Nishimura H, Nakamura Y, Sumner RP, Khosla MC (1982) Vasopressor and depressor actions of angiotensin in the anesthetized fowl. American Journal of Physiology - Heart and Circulatory Physiology 242:H314-H324

    CAS  Google Scholar 

  • Nishimura H, Yang Y, Hubert C, Gasc JM, Ruijtenbeek K, De Mey J, Boudier HA, Corvol P (2003) Maturation-dependent changes of angiotensin receptor expression in fowl. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology 285:R231-R242

    PubMed  CAS  Google Scholar 

  • Nonidez JF (1935) The presence of depressor nerves in the aorta and carotid of birds. Anatomical Record 62:47-73

    Google Scholar 

  • Ogut O, Brozovich FV (2000) Determinants of the contractile properties in the embryonic chicken gizzard and aorta. American Journal of Physiology - Cell Physiology 279:C1722-C1732

    PubMed  CAS  Google Scholar 

  • Owens GK, Kumar MS, Wamhoff BR (2004) Molecular Regulation of Vascular Smooth Muscle Cell Differentiation in Development and Disease. Physiol Rev 84: 767-801

    PubMed  CAS  Google Scholar 

  • Pappano AJ (1975) Development of autonomic neuroeffector transmission in the chick embryo heart. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. Raven Press, New York

    Google Scholar 

  • Pappano AJ (1977) Ontogenetic development of autonomic neuroeffector transmission and transmitter reactivity in embryonic and fetal hearts. Pharmacological Reviews 29:3-33

    PubMed  CAS  Google Scholar 

  • Pappano AJ, Löffelholz K (1974) Ontogenesis of adrenergic and cholinergic neuroeffector transmission in chick embryo heart. Journal of Pharmacology and Experimental Therapeutics 191:468-478

    PubMed  CAS  Google Scholar 

  • Pappano A, Löffelholz K, Skowronek C (1973) Onset of cholinergic neuroeffector transmission in chick embryo heart. Pharmacologist 15:198

    Google Scholar 

  • Parati G (2005) Arterial baroreflex control of heart rate: determining factors and methods to assess its spontaneous modulation. Journal of Physiology - London 565:706-707

    CAS  Google Scholar 

  • Pickering JW (1895) Further experiments on the embryonic heart. Journal of Physiology 18:470-483

    PubMed  CAS  Google Scholar 

  • Rabkin SW (1996) The angiotensin II subtype 2 (AT2) receptor is linked to protein kinase C but not cAMP-dependent pathways in the cardiomyocyte. Canadian Journal of Physiology and Pharmacology 74:125-131

    PubMed  CAS  Google Scholar 

  • Robinson M, Adu J, Davies AM (1996) Timing and regulation of trkB and BDNF mRNA expression in placode-derived sensory neurons and their targets. European Journal of Neuroscience 8:2399-2406

    PubMed  CAS  Google Scholar 

  • Romanoff AL (1967) Biochemistry of the Avian Embryo. A Quantitative Analysis of Prenatal Development. Wiley, New York

    Google Scholar 

  • Rouwet EV, De Mey JGR, Slaaf DW, Heineman E, Ramsay G, Le Noble FAC (2000) Development of vasomotor responses in fetal mesenteric arteries. American Journal of Physiology 279:H1097-H1105

    PubMed  CAS  Google Scholar 

  • Ruijtenbeek K, Kessels CGA, Villamor E, Blanco CE, De Mey JGR (2002) Direct effects of acute hypoxia on the reactivity of peripheral arteries of the chicken embryo. American Journal of Physiology 283:R331-R338

    PubMed  CAS  Google Scholar 

  • Russell MJ, Dombkowski RA, Olson KR (2008) Effects of hypoxia on vertebrate blood vessels. Journal of Experimental Zoology Part A Ecological Genetics and Physiology 309:55-63

    Google Scholar 

  • Rzucidlo EM, Martin KA, Powell RJ (2007) Regulation of vascular smooth muscle cell differentiation. Journal of Vascular Surgery 45 Suppl A:A25-A32

    PubMed  Google Scholar 

  • Saint-Petery LB, Van Mierop LHS (1974) Evidence for presence of adrenergic receptors in the 6-day chick embryo. American Journal of Physiology 227:1406-1410

    Google Scholar 

  • Savary K, Michaud A, Favier J, Larger E, Corvol P, Gasc J-M (2005) Role of the renin-angiotensin system in primitive erythropoiesis in the chick embryo. Blood 105:103-110

    PubMed  CAS  Google Scholar 

  • Segar JL, Hajduczok G, Smith BA, Merrill DC, Robillard JE (1992) Ontogeny of baroreflex control of renal sympathetic nerve activity and heart rate. American Journal of Physiology 263:H1819-H1826

    PubMed  CAS  Google Scholar 

  • Shigenobu K, Sperelakis N (1972) Calcium current channels induced by catecholamines in chick embryonic potassium hearts whose fast sodium channels are blocked by tetrodotoxin or elevated potassium. Circulation Research 31:932-952

    PubMed  CAS  Google Scholar 

  • Sissman NJ (1970) Developmental landmarks in cardiac morphogenesis: comparative chronology. American Journal of Cardiology 25:141-148

    PubMed  CAS  Google Scholar 

  • Smith GC (1998) The pharmacology of the ductus arteriosus. Pharmacological Reviews 50:35-58

    PubMed  CAS  Google Scholar 

  • Smith FM, Jones DR (1992) Baroreflex control of arterial blood pressure during involuntary diving in ducks. American Journal of Physiology 263:R693-R702

    PubMed  CAS  Google Scholar 

  • Smith GC, McGrath JC (1988) Indomethacin, but not oxygen tension, affects the sensitivity of isolated neonatal rabbit ductus arteriosus, but not aorta, to noradrenaline. Cardiovascular Research 22:910-915

    PubMed  CAS  Google Scholar 

  • Smith GC, McGrath JC (1993) Characterisation of the effect of oxygen tension on response of fetal rabbit ductus arteriosus to vasodilators. Cardiovascular Research 27:2205-2211

    PubMed  CAS  Google Scholar 

  • Smith GC, McGrath JC (1995) Contractile effects of prostanoids on fetal rabbit ductus arteriosus. Journal of Cardiovascular Pharmacology 25:113-118

    PubMed  CAS  Google Scholar 

  • Smyth HS, Sleight P, Pickering GW (1969) Reflex regulation of arterial pressure during sleep in man: a quantitative method of assessing baroreflex sensitivity. Circulation Research 24:109-121

    PubMed  CAS  Google Scholar 

  • Somlyo AP, Somlyo AV (2003) Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: modulated by G proteins, kinases, and myosin phosphatase. Physiological Reviews 83:1325-1358

    PubMed  CAS  Google Scholar 

  • Stallone JN, Nishimura H, Nasjletti A (1990) Angiotensin II binding sites in aortic endothelium of domestic fowl. American Journal of Physiology — Endocrinology and Metabolism 258:E777-E782

    Google Scholar 

  • Sutendra G, Michelakis ED (2007) The chicken embryo as a model for ductus arteriosus developmental biology: cracking into new territory. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology 292:R481-R484

    PubMed  CAS  Google Scholar 

  • Takahashi T, Sugishita Y, Kinugawa K-I, Shimizu T, Yao A, Harada K, Matsui H, Nagai R (2001) Ets-1 is involved in transcriptional regulation of the chick inducible nitric oxide synthase gene in embryonic ventricular myocytes. Molecular and Cellular Biochemistry 226:57-65

    PubMed  CAS  Google Scholar 

  • Takei Y (2000) Structural and functional evolution of the natriuretic peptide system in vertebrates. International Reviews in Cytology 194:1-66

    CAS  Google Scholar 

  • Tazawa H, Hou P-CL (1997) Avian cardiovascular development. In: Burggren WW and Keller B (eds) Cardiovascular Development: From Molecules to Organisms. Cambridge University Press, Cambridge, pp 193-210

    Google Scholar 

  • Tazawa H, Hashimoto Y, Doi K (1992) Blood pressure and heart rate of chick embryo (Gallus domesticus) within the egg: Responses to autonomic drugs. In: Hill RB, Kuwasawa K, McMahon BR, Kuramoto T (eds) Phylogenetic Models in Functional Coupling of the CNS and the Cardiovascular System. Karger, Amsterdam, pp 86-96

    Google Scholar 

  • Tazawa H, Akiyama R, Moriya K (2002) Development of cardiac rhythms in birds. Comparative Biochemistry and Physiology A — Molecular and Integrative Physiology 132:675-689

    Google Scholar 

  • Thebaud B, Michelakis ED, Wu XC, Moudgil R, Kuzyk M, Dyck JR, Harry G, Hashimoto K, Haromy A, Rebeyka I, Archer SL (2004) Oxygen-sensitive Kv channel gene transfer confers oxygen responsiveness to preterm rabbit and remodeled human ductus arteriosus: implications for infants with patent ductus arteriosus. Circulation 110:1372-1379

    PubMed  CAS  Google Scholar 

  • Toop T, Donald JA (2004) Comparative aspects of natriuretic peptide physiology in non-mammalian vertebrates: a review. Journal of Comparative Physiology [B] 174:189-204

    CAS  Google Scholar 

  • Topouzis S, Catravas J, Ryan J, Rosenquist T (1992) Influence of vascular smooth muscle heterogeneity on angiotensin converting enzyme activity in chicken embryonic aorta and in endothelial cells in culture. Circulation Research 71:923-931

    PubMed  CAS  Google Scholar 

  • Trajanovska S, Inoue K, Takei Y, Donald JA (2007) Genomic analyses and cloning of novel chicken natriuretic peptide genes reveal new insights into natriuretic peptide evolution. Peptides 28:2155-2163

    PubMed  CAS  Google Scholar 

  • Tristani-Firouzi M, Reeve HL, Tolarova S, Weir EK, Archer SL (1996) Oxygen-induced constriction of rabbit ductus arteriosus occurs via inhibition of a 4-aminopyridine-, voltage-sensitive potassium channel. Journal of Clinical Investigation 98:1959-1965

    PubMed  CAS  Google Scholar 

  • Ungureanu-longrois D, Bezie Y, Perret C, Laurent S (1997) Effects of exogenous and endogenous nitric oxide on the contractile function of cultured chick embryo ventricular myocytes. Journal of Molecular and Cellular Cardiology 29:677-687

    PubMed  CAS  Google Scholar 

  • Wakley GK, Bower AJ (1981) The distal vagal ganglion of the hen (Gallus domesticus). A histological and physiological study. Journal of Anatomy 132:95-105

    CAS  Google Scholar 

  • Wang Z-Y, Bisgard GE (2005) Postnatal growth of the carotid body. Respiratory Physiology & Neurobiology 149:181-190

    Google Scholar 

  • Webb RC (2003) Smooth muscle contraction and relaxation. Advances in Physiological Education 27:201-206

    Google Scholar 

  • Weir EK, Hong Z, Porter VA, Reeve HL (2002) Redox signaling in oxygen sensing by vessels. Respiratory Physiology & Neurobiology 132:121-130

    CAS  Google Scholar 

  • Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL (2005) Acute oxygen-sensing mechanisms. New England Journal of Medicine 353:2042-2055

    PubMed  CAS  Google Scholar 

  • Verberne ME, Gittenberger-de Groot AC, Van Iperen L, Poelmann RE (1999) Contribution of the cervical sympathetic ganglia to the innervation of the pharyngeal arch arteries and the heart of in the chick embryo. The Anatomical Record 255:407-419

    PubMed  CAS  Google Scholar 

  • Whittow GC, Sturkie PD (2000) Sturkie's Avian Physiology. Academic Press, San Diego

    Google Scholar 

  • Villamor E, Ruiz T, Perez-Vizcaino F, Tamargo J, Moro M (1997) Endothelium-derived nitric oxide-dependent response to hypoxia in piglet intrapulmonary arteries. Biology of the Neonate 72:62-70

    PubMed  CAS  Google Scholar 

  • Villamor E, Ruijtenbeek K, Pulgar V, De Mey JG, Blanco CE (2002) Vascular reactivity in intrapulmonary arteries of chicken embryos during transition to ex ovo life. American Journal of Physiology 282:R917-R927

    PubMed  CAS  Google Scholar 

  • Villamor E, Kessels CG, Fischer MA, Bast A, de Mey JG, Blanco CE (2003) Role of superoxide anion on basal and stimulated nitric oxide activity in neonatal piglet pulmonary vessels. Pediatric Research 54:372-381

    PubMed  CAS  Google Scholar 

  • Villamor E, Kessels CGA, Ruijtenbeek K, Van Suylen RJ, Belik J, De Mey JGR, Blanco CE (2004) Chronic in ovo hypoxia decreases pulmonary arterial contractile reactivity and induces biventricular cardiac enlargement in the chicken embryo. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology 287:R642-R651

    PubMed  CAS  Google Scholar 

  • Villamor E, van der Sterren S, Agren P, Zoer B, Blanco CE, Cogolludo AL, Perez-Vizcaino F (2008a) Rho Kinase inhibitors impair the response of chicken ductus arteriosus to oxygen and other vasoconstrictors. FASEB Journal 22:1221-1239

    Google Scholar 

  • Villamor E, van der Sterren S, and Cogolludo AL (2008b) Effects of in ovo exposure to hyperoxia on chicken ductus arteriosus reactivity. FASEB Journal 22:721-758

    Google Scholar 

  • Wingard CJ and Godt RE (2002) Cardiac neural crest ablation alters aortic smooth muscle force and voltage-sensitive Ca2+ responses. Journal of Muscle Research and Cell Motility 23:293-303

    PubMed  CAS  Google Scholar 

  • Wittman J and Prechtl J (1991) Respiratory function of catecholamines during the late period of avian development. Respiration Physiology 83:375-386

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Altimiras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Altimiras, J., Crossley, D., Villamor, E. (2009). Prenatal Development of Cardiovascular Regulation in Avian Species. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_16

Download citation

Publish with us

Policies and ethics