Advertisement

Conclusions and Future Research

Chapter
  • 887 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 178)

Abstract

This Chapter provides a critical review of the works presented in this Volume and also narrates the scope of potential applications of the different metaheuristic-based automatic clustering schemes in data mining, high level image processing and bioinformatics. The chapter ends with a discussion on the possible evolution of the proposed methods for handling clusters of non-spherical and shell type shapes, co-clustering and the problem of integrating together a feature selection module and a clustering module under the framework of Differential Evolution (DE).

Keywords

Particle Swarm Optimization Differential Evolution Intrusion Detection Intrusion Detection System Subspace Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolutionary Computation 11(1), 56–76 (2007)CrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Transactions Geoscience and Remote Sensing (2006)Google Scholar
  3. 3.
    Omran, M., Engelbrecht, A.P., Salman, A.: A color image quantization algorithm based on particle swarm optimization. Informatica Journal 29, 261–269 (2005)zbMATHGoogle Scholar
  4. 4.
    Freisleben, B., Schrader, A.: An evolutionary approach to color image quantization. In: IEEE International Conference on Evolutionary Computation, pp. 459–464 (1997)Google Scholar
  5. 5.
    Quackenbush, J.: Computational analysis of microarray data. National Review of Genetics 2, 418–427 (2001)CrossRefGoogle Scholar
  6. 6.
    Special Issue on Bioinformatics, IEEE Computer 35 (July 2002)Google Scholar
  7. 7.
    Baker, T.K., Carfagna, M.A., Gao, H., Dow, E.R., Li, O., Searfoss, G.H., Ryan, T.P.: Temporal gene expression analysis of monolayer cultured rat hepatocytes. Chem. Res. Toxicol. 14(9) (2001)Google Scholar
  8. 8.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96, 6745–6750 (1999) (Cell Biology)CrossRefGoogle Scholar
  9. 9.
    Mykerjee, B., et al.: Network Intrusion Detection. IEEE Network 8(3), 26–41 (1994)CrossRefGoogle Scholar
  10. 10.
    Denning, D.: An intrusion detection model. IEEE Transactions on Software Engineering (1987)Google Scholar
  11. 11.
    Shafi, K., Abbass, H.A.: Biologically-inspired complex adaptive systems approaches to network intrusion detection. Inf. Secur. Tech. Rep. 12(4), 209–217 (2007)CrossRefGoogle Scholar
  12. 12.
    Fries, T.P.: A fuzzy-genetic approach to network intrusion detection. In: Keijzer, M. (ed.) Proceedings of the 2008 GECCO Conference Companion on Genetic and Evolutionary Computation, GECCO 2008, pp. 2141–2146. ACM, New York (2008)CrossRefGoogle Scholar
  13. 13.
    Mark, C., Spafford, G.: Applying genetic programming to intrusion detection. In: Proceedings of 1995 AAAI Fall Symposium on Genetic Programming, Cambridge, Massachusetts, October 30, pp. 1–8 (2003), http://citeseer.nj.nec.com/crosbie95applying.html
  14. 14.
    Owais, S., Snášel, V., Krömer, P., Abraham, A.: Survey: using genetic algorithm approach in intrusion detection systems techniques. In: 7th International Conference on Computer Information Systems and Industrial Management Applications (CISIM 2008), pp. 296–303. IEEE Computer Society press, USA (2008)Google Scholar
  15. 15.
    van Rijsbergen, C.J.: Information Retrieval, 2nd edn. Buttersworth, London (1989)Google Scholar
  16. 16.
    Kowalski, G.: Information Retrieval Systems – Theory and Implementation. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
  17. 17.
    Cutting, D.R., Karger, D.R., Pedersen, J.O., Tukey, J.W.: Scatter/gather: a cluster-based approach to browsing large document collections. In: SIGIR 1992, pp. 318–329 (1992)Google Scholar
  18. 18.
    Zamir, O., Etzioni, O., Madani, O., Karp, R.M.: Fast and intuitive clustering of web documents. In: KDD 1997, pp. 287–290 (1997)Google Scholar
  19. 19.
    Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: Proceedings of the 14th International Conference on Machine Learning (ML), Nashville, Tennessee, pp. 170–178 (July 1997)Google Scholar
  20. 20.
    Steinbach, M., Karypis, G., Kumar, V.: A comparison of document clustering techniques. In: Text Mining Workshop, KDD (2000)Google Scholar
  21. 21.
    Zhao, Y., Karypis, G.: Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering. Machine Learning 55(3), 311–331 (2004)zbMATHCrossRefGoogle Scholar
  22. 22.
    Santimetvirul, C., Willett, P.: Non-hierarchic document clustering using a genetic algorithm. Information Research 1(1) (1995)Google Scholar
  23. 23.
    Raghavan, V.V., Birchand, K.: A clustering strategy based on a formalism of the reproductive process in a natural system. In: Proceedings of the Second International Conference on Information Storage and Retrieval, pp. 10–22 (1979)Google Scholar
  24. 24.
    Merkl, D.: Text mining with self-organizing maps. In: Handbook of data mining and knowledge, pp. 903–910. Oxford University Press, Inc., New York (2002)Google Scholar
  25. 25.
    Xiaohui, C., Potok, T.E., Palathingal, P.: Document Clustering using Particle Swarm Optimization. In: IEEE Swar Intelligence Symposium, The Westin Pasadena, Pasadena, California (2005)Google Scholar
  26. 26.
    Abraham, A., Das, S., Konar, A.: Document clustering using differential evolution. In: IEEE Congress in Evolutionary Computation, World Congress in Computational Intelligence, pp. 6248–6255. IEEE press, Los Alamitos (2006)Google Scholar
  27. 27.
    Muni, D.P., Pal, N.R., Das, J.: Genetic programming for simultaneous feature selection and classifier design. IEEE Transactions on Systems, Man and Cybernetics-B 36(1) (2004)Google Scholar
  28. 28.
    Pan, Q., Tasgetiren, M.F., Liang, Y.: A discrete differential evolution algorithm for the permutation flowshop scheduling problem. In: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO 2007, pp. 126–133. ACM, New York (2007)CrossRefGoogle Scholar
  29. 29.
    Attneave, F.: Symmetry information and memory for pattern. Am. J. Psychology 68, 209–222 (1995)CrossRefGoogle Scholar
  30. 30.
    Su, M.-C., Chou, C.-H.: A modified version of the k-means algorithm with a distance based on cluster symmetry. IEEE Transactions Pattern Analysis and Machine Intelligence 23(6), 674–680 (2001)CrossRefGoogle Scholar
  31. 31.
    Bandyopadhyay, S., Saha, S.: Point Symmetry Based Clustering Technique for Automatic Evolution of Clusters. IEEE Transactions on Knowledge and Data Engineering 20(11), 1–17 (2008)CrossRefGoogle Scholar
  32. 32.
    Bregman, L.M.: The relaxation method of finding the common points of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics 7, 200–217 (1967)CrossRefGoogle Scholar
  33. 33.
    Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. Journal of Machine Learning Research 6, 1705–1749 (2005)MathSciNetGoogle Scholar
  34. 34.
    Van Mechelen, I., Bock, H.H., De Boeck, P.: Two-mode clustering methods: a structured overview. Statistical Methods in Medical Research 13(5), 363–394 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Madeira, S.C., Oliveira, A.L.: Biclustering algorithms for biological data analysis: a survey. IEEE Transactions on Computational Biology and Bioinformatics 1(1), 24–45 (2004)CrossRefGoogle Scholar
  36. 36.
    Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recognition 39, 2464–2477 (2006)zbMATHCrossRefGoogle Scholar
  37. 37.
    Divina, F., Aguilar-Ruiz, J.S.: Biclustering of expression data with evolutionary computation. IEEE Trans. Knowl. Data Eng. 18(5), 590–602 (2006)CrossRefGoogle Scholar
  38. 38.
    Parsons, L., Haque, E., Liu, H.: Subspace clustering for high dimensional data: a review. SIGKDD Explor. Newsl. 6, 90–105 (2004)CrossRefGoogle Scholar
  39. 39.
    Sarafis, I.A., Trinder, P.W., Zalzala, A.M.S.: Towards effective subspace clustering with an evolutionary algorithm. In: Proceedings of the IEEE Congress on Evolutionary Computation (CEC 2003). IEEE Press, Los Alamitos (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

There are no affiliations available

Personalised recommendations