Skip to main content

Clustering Using Multi-objective Differential Evolution Algorithms

  • Chapter
Metaheuristic Clustering

Part of the book series: Studies in Computational Intelligence ((SCI,volume 178))

Abstract

This chapter introduces the task of fuzzy clustering in a Multi-objective Optimization (MO) framework. It compares the performances of four recently developed multi-objective variants of Differential Evolution (DE) algorithm over the fuzzy clustering problem, where two conflicting fuzzy validity indices are simultaneously optimized. The resultant Pareto optimal set of solutions from each algorithm consists of a number of non-dominated solutions, from which the user can choose the most promising ones according to the problem specifications. A real-coded representation of the search variables, accommodating variable number of cluster centers, is used for DE. The performances of four DE variants have also been contrasted to that of two most well-known schemes of MO clustering namely the Non Dominated Sorting Genetic Algorithm ( NSGA II) and Multi-Objective Clustering with an unknown number of Clusters K (MOCK). Experimental results over four artificial and four real life datasets of varying range of complexities indicates that DE holds immense promise as a candidate algorithm for devising MO clustering schemes .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2) (2002)

    Google Scholar 

  2. Knowles, J.D., Corne, D.W.: Approxmating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  3. Sawaragi, Y., Nakayama, H., Tanino, T.: Theory of multiobjective optimization. Mathematics in Science and Engineering, vol. 176. Academic Press Inc., Orlando (1985)

    MATH  Google Scholar 

  4. Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester (2001)

    MATH  Google Scholar 

  5. Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  6. Suresh, K., Ghosh, S., Kundu, D., Das, S.: Clustering with multi-objective differential evolution – a comparative study. In: The International conference on Advanced Computing Technologies (ICACT 2008), Hyderabad, India, December 26-27 (to appear, 2008)

    Google Scholar 

  7. Abbass, H.A., Sarker, R.: The pareto differential evolution algorithm. International Journal on Artificial Intelligence Tools 11(4), 531–552 (2002)

    Article  Google Scholar 

  8. Xue, F., Sanderson, A.C., Graves, R.J.: Pareto-based multi-objective differential evolution. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), Canberra, Australia, vol. 2, pp. 862–869. IEEE Press, Los Alamitos (2003)

    Google Scholar 

  9. Robic, T., Filipic, B.: DEMO: Differential Evolution for Multiobjective Optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 520–533. Springer, Heidelberg (2005)

    Google Scholar 

  10. Iorio, A.W., Li, X.: Solving rotated multi-objective optimization problems using differential evolution. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 861–872. Springer, Heidelberg (2004)

    Google Scholar 

  11. Xie, X., Beni, G.: Validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Machine Learning 3, 841–846 (1991)

    Article  Google Scholar 

  12. Bezdek, J.C.: Cluster validity with fuzzy sets. Journal of Cybernetics (3), 58–72 (1974)

    Google Scholar 

  13. Tibshirani, R., Walther, G., Hastie, T.: Estimating the number of clusters in a dataset via the Gap statistic. J. Royal Statist. Soc.: SeriesB (Statistical Methodology) 63(2), 411–423 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Handl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Transactions on Evolutionary Computation 11(1), 56–76 (2007)

    Article  Google Scholar 

  15. Bandyopadhyay, S., Maulik, U., Mukhopadhyay, A.: Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Transactions Geoscience and Remote Sensing (2006)

    Google Scholar 

  16. Chu, S., et al.: The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998)

    Article  Google Scholar 

  17. Deb, K., Agrawal, S., Pratab, A., Meyarivan, T.: A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 849–858. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications, Ph.D. thesis, Shaker Verlag, Aachen, Germany (1999)

    Google Scholar 

  19. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)

    Article  Google Scholar 

  20. Thomsen, R.: Multimodal optimization using crowding-based differential evolution. In: Congress on Evolutionary Computation (CEC 2004), Portland, Oregon, USA, IEEE Service Center, vol. 1, pp. 1382–1389 (2004)

    Google Scholar 

  21. Abbass, H.A.: The self-adaptive pareto differential evolution algorithm. In: Congress on Evolutionary Computation (CEC 2002), Piscataway, New Jersey, IEEE Service Center, vol. 1, pp. 831–836 (2002)

    Google Scholar 

  22. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the pareto archived evolution strategy. Evolutionary Computation 8(2), 149–172 (2000)

    Article  Google Scholar 

  23. Branke, J., Deb, K., Dierolf, H., Osswald, M.: Finding knees in multi-objective optimization. In: Proc. 8th Int. Conf. Parallel Problem Solving From Nature, pp. 722–731 (2004)

    Google Scholar 

  24. Deb, K.: Multi-objective evolutionary algorithms: Introducing bias among Pareto-optimal solutions. In: Advances in Evolutionary Computing: Theory and Applications, pp. 263–292. Springer, London (2003)

    Google Scholar 

  25. Mattson, C.A., Mullur, A.A., Messac, A.: Smart Pareto filter: Obtaining a minimal representation of multiobjective design space. Eng. Optim. 36(6), 721–740 (2004)

    Article  MathSciNet  Google Scholar 

  26. Hubert, L., Arabie, P.: Comparing partitions. Journal of Classification, 193–218 (1985)

    Google Scholar 

  27. Rand, W.M.: Objective criteria for the evaluation of clustering methods. Journal of the American Statistical Association 66, 846–850 (1971)

    Article  Google Scholar 

  28. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20(1), 53–65 (1987)

    Article  MATH  Google Scholar 

  29. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 2nd edn. Elsevier Academic Press, Amsterdam (2003)

    Google Scholar 

  30. The Gene Ontology Consortium: Gene ontology: tool for the unification of biology. Nat. Genet. 25, 25–29 (2000)

    Google Scholar 

  31. Keim, D.A., Kriegel, H.-P.: Visualization techniques for mining large databases: a comparison. IEEE Transactions on Knowledge and Data Engineering 8(6), 923–938 (1996)

    Article  Google Scholar 

  32. Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D.: Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998)

    Article  Google Scholar 

  33. Al-Shahrour, F., Díaz-Uriarte, R., Dopazo, J.: FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes. Bioinformatics 20, 578–580 (2004)

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Das, S., Abraham, A., Konar, A. (2009). Clustering Using Multi-objective Differential Evolution Algorithms. In: Metaheuristic Clustering. Studies in Computational Intelligence, vol 178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93964-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-93964-1_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92172-1

  • Online ISBN: 978-3-540-93964-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics