Skip to main content

Innovation durch Paradigmenwechsel – zur Bone Welding® Technologie

  • Chapter
Medizintechnik
  • 2001 Accesses

Zusammenfassung

Innovation entstand und entsteht in der Medizin häufig aus dem Bedürfnis des Klinikers heraus, bestehende chirurgische Techniken zu verbessern oder durch die Einführung neuer Methoden, chirurgische Zugänge zu ermöglichen, welche für den Patienten weniger traumatisch und für den Chirurgen technisch einfacher und damit sicherer sind. Historisch gesehen wurden Innovationen bis weit in die zweite Hälfte des 20. Jahrhunderts vor allem durch Kliniker angeregt und auch massgeblich mitentwickelt. Als illustrative Beispiele hierfür seien die heute immer noch führenden und auch kommerziell sehr erfolgreichen Entwicklungen von Osteosynthesetechniken und Implantaten durch die AO (Arbeitsgemeinschaft für Osteosynthesefragen) oder auch die Einführung endoskopischer Operationstechniken erwähnt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. First Albany Equity Research, Motion Preservation: Innovations in Spinal Implants, 2007, p. 9.

    Google Scholar 

  2. Grewell D.A., Benatar A., Park J. (eds.), Plastics and Composites Welding Handbook, Hanser Publishers Munich, 2003.

    Google Scholar 

  3. Forssell H., Aro H., Aho A.J., Experimental osteosynthesis with liquid ethyl cyanacrylate polymerized with ultrasound. Arch Orthop Trauma Surg, 103, 1984, p. 278 –283.

    Article  Google Scholar 

  4. Dewey W.C., Arrhenius relationships from the molecules and the cells to the clinic., Int. J. Hyperthermia 10, 1994, p. 457–483.

    Article  Google Scholar 

  5. Rivens I., Shaw A., Civale J. Morris H., Treatment monitoring and thermometry for therapeutic focused ultrasound, Int. J. Hyperthermia, 23, 2007, p. 121–139.

    Article  Google Scholar 

  6. Iwashina T., Mochida J., Miyazaki T., Watanabe T., Iwabuchi S., Ando K., Hotta T., Sakai D., Low-intensity pulsed ultrasound stimulates cell proliferation and proteoglycan production in rabbit intervertebral disc cells cultured in alginate., Biomaterials 27, 2006, p. 354–361.

    Article  Google Scholar 

  7. Kleinstück F.S., Diederich C.J., Nau W.H, Puttlitz C.M., Smith J.A., Bradford D.S., Lotz J.C., Temperature and thermal dose distributions during intradiscal electrohermal therapy in the cadaveric lumbar spine., Spine 28, 2003, p. 1700–1709.

    Article  Google Scholar 

  8. Langhoff J.D., Evaluation der BoneWelding® Technologie zur Verankerung von Implantaten im Knochen – eine Studie am Schaf, Dissertation Universität Zürich, 2006.

    Google Scholar 

  9. Langhoff J.D., Kuemmerle J.M., Mayer J., Weber U., Berra M., Mueller J.M., Kaestner S., Auer J.A., von Rechenberg B., Biocompatibility of an ultrasound assisted anchoring technique (BoneWelding® Technology) for enhanced fixation of implants to bone - an experimental study in sheep; Journal of Applied Orthopedics, 2007, submitted.

    Google Scholar 

  10. Sapareto S.A., Dewey W.C., Thermal dose determination in cancer therapy. International Journal of Radiation Oncology, 10, 1984, p. 787–800.

    Article  Google Scholar 

  11. Goodman S.B., Schatzker J., Sumner-Smith G., Fornasier V.L., Goften N., Hunt C., The effect of polymethylmethacrylate on bone: an experimental study. Arch Orthop Trauma Surg, 104, 1985, p. 150–154.

    Article  Google Scholar 

  12. Bennington I.C., Biagioni P.A., Briggs J., Sheridan S., Lamey P-J., Thermal changes observed at implant sites during internal and external irrigation. Clin Oral Impl Res, 13, 2002, p. 293–297.

    Article  Google Scholar 

  13. Davidson S.R.H., James D.F., Drilling in Bone : Modeling heat generation and temperature distribution. Journal of Biomechanical Engineering, 125, 2003, p. 305–314.

    Article  Google Scholar 

  14. Stanczyk M., Telega J.J., Heat transfer problems in orthopaedics. Engineering Transactions, 51, 2004, p. 267–275.

    Google Scholar 

  15. Deramond H., Wright N.T., Belkoff S.M., Temperture elevation caused by bone cement polymerization during vertebroblasty. Bone, 25, 1999, p. 178–218.

    Article  Google Scholar 

  16. Baroud G., Swanson T., Steffen T., Setting properties of four acrylic and two calcium-phosphate cements used in vertebroblasty. Journal of Long-Term Effects of Medical Implants, 16, 2006, p. 51–59.

    Google Scholar 

  17. Kim W.Y., Han C.H., Park J.I., Kim J.Y., Failure of intertrochanteric fracture fixation with a dynamic hip screw in relation to pre-operative fracture stability and osteoporosis. Int Orthop. 25, 2001, p. 360–362.

    Article  Google Scholar 

  18. Ferguson S.J., Weber U., von Rechenberg B., Mayer J., Enhancing the mechanical integrity of the implant-bone interface with BoneWelding technology: determination of quasi-static interfacial strength and fatigue resistance. J Biomed Mater Res B Appl Biomater, 77, 2006, p. 13–20.

    Google Scholar 

  19. Meyer D.C., Mayer J., Weber U., Mueller A., Koch P.P., Ultrasonically implanted PLA suture anchors are stable in osteopenic bone. Clin Orthop Relat Res, 442, 2006, p. 143–148.

    Article  Google Scholar 

  20. Pilling E., Meissner H., Jung R., Koch R., Loukota R.. An experimental study of the biomechanical stability of ultrasound-activated pinned (SonicWeld Rx((R))+Resorb-X((R))) and screwed fixed (Resorb-X((R))) resorbable materials for osteosynthesis in the treatment of simulated craniosynostosis in sheep., British Journal of Oral and Maxillofacial Surgery, 2007, in press.

    Google Scholar 

  21. Pilling E., Mai R., Theissig F., Stadlinger B., Loukota R., An experimental in vivo analysis of the resorption to ultrasound activated pins (Sonic weld((R))) and standard biodegradable screws (ResorbX((R))) in sheep., British Journal of Oral and Maxillofacial Surgery, 2007, in press.

    Google Scholar 

  22. Mai R., Günter Lauera G., Pilling E., Jung R., Leonhardt H., Proff P., Stadlinger B., Pradel W., Eckelt U., Fanghänel J., Gedrange T., Bone welding – A histological evaluation in the jaw; Annals of Anatomy, 2007, in press.

    Google Scholar 

  23. Edge, G.: „Inspirational Management“; in: Journal of Business Recreation, Januar 2000.

    Google Scholar 

  24. Lanyon L., Skerry T., Postmenopausal osteoporosis as a failure of bone’s adaptation to functional loading: a hypothesis. J Bone Miner Res, 16, 2001, p. 1937–1947.

    Article  Google Scholar 

  25. Peter, J.: „Grossbaustelle Hochschullandschaft“ in: Die Welt, 1.4.2004

    Google Scholar 

  26. Reier, S.: „From Vienna to Harvard“; in: International Herald Tribune (IHT), 10.6.2000

    Google Scholar 

  27. Zahn, E. (Hrsg.): „Handbuch Technologiemanagement“, Stuttgart 1995

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mayer, J., Plasonig, G. (2009). Innovation durch Paradigmenwechsel – zur Bone Welding® Technologie. In: Wintermantel, E., Ha, SW. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93936-8_80

Download citation

Publish with us

Policies and ethics