Skip to main content

Sticktechnologie für medizinische Textilien und Tissue Engineering

  • Chapter

Zusammenfassung

Textile Strukturen werden in grossem Ausmass als medizinische Implantate eingesetzt, um Weich- und Hartgewebe zu unterstützen oder zu ersetzen. Im Tissue Engineering gewinnen sie an Bedeutung als scaffolds, um biologische Gewebe in vitro zu züchten für anschliessende Implantation oder extrakorporale Anwendungen. Textilien sind gewöhnlich anisotrope zweidimensionale Strukturen mit hoher Steifigkeit in der Ebene und geringer Biegesteifigkeit. Durch eine Vielzahl textiler Prozesse und durch entsprechende Wahl des Fasermaterials ist es möglich, Oberfläche, Porosität und mechanische Anisotropie in hohem Masse zu variieren. Wegen ihrer einzigartigen strukturellen und mechanischen Eigenschaften können faserbasierte Materialien in weitem Masse biologischem Gewebe nachgeahmt werden [1]. Gesticke erweitern das Feld von technischen und besonders medizinischen Textilien, denn sie vereinen sehr hohe strukturelle Variabilität mit der Möglichkeit, mechanische Eigenschaften in einem grossen Bereich einzustellen, um so die mechanischen Anforderungen des Empfängergewebes zu erfüllen (Abb. 42.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Gupta B.S., Medical Textile Structures: An Overview, Medical Plastics and Biomaterials, Jan, 1998, p. 16–21.

    Google Scholar 

  2. Dransfield K., Baillie C., Mai Y.-W., Improving the delamination resistance of CFRP by stiching – A review, Composites Science and Technology, 50, 1994, p. 305–307.

    Article  Google Scholar 

  3. Breuer U.P., Reinforcement of CFRP Structures by Tailored Fibre Placement, Polymers & Polymer Composites, 6, 9, 1998, p. 499–504.

    Google Scholar 

  4. Ellis J.G., Embroidery for engineering and surgery, Textile Institute World Conference, Manchester, 2000.

    Google Scholar 

  5. Warrior N.A., Rudd C.D., Gardnewr S.P., Experimental studies of embroidery for the local reinforcement of composites strructures 1. Stress concentrations, Composites Science and Technology, 59, 1999, p. 2125–2137.

    Article  Google Scholar 

  6. Karamuk E., Mayer J., Embroidery technology for medical textiles and tissue engineering, Technical Textiles International, 9, 6, 2000, p. 9–12.

    Google Scholar 

  7. Redlich A., Perka C., Schultz O., Spitzer R., Häuptl T., Burmester G.-R., Sittinger C., Bone Engineering on the Basis of Periosteal Cells Cultured in Polymer Fleeces, Journal of Materials Science: Materials in Medicine, 10, 1999, p. 767–772.

    Article  Google Scholar 

  8. Naughton G.K., Bartel D., Mansbridge J., Synthetic Biodegradable Polymer Scaffolds, in Synthetic Biodegradable Polymer Scaffolds, Atala A., Mooney D.J. (eds.), Birkhäuser, Boston, 1997, p. 235–251.

    Google Scholar 

  9. Cao Y., Vacanti J.P., Ma P.X., Ibarpa C., Paige K.T., Upton J., Langer R., Vacanti C.A., Tissue Engineering of Tendon, Materials Research Society Symposium, 1995.

    Google Scholar 

  10. Karamuk E. et al., Partially Degradable Film/Fabric Composites: Textile Scaffolds for Liver Cell Culture. Artificial Organs, Artificial Organs, 23, 9, 1999, p. 881–884.

    Article  Google Scholar 

  11. Naughton B.A., Roman J.S., Sibanda B., Weintraub J.P., Kamali V., Sterotypic culture systems for liver and bone marrow: Evidence for the development of functional tissue in vitro and following implantation in vivo, Biotechnology and Bioengineering, 43, 1994, p. 810–825.

    Article  Google Scholar 

  12. Reece G.P., Patrick C.W., Tissue engineered construct design principles, in Frontiers in Tissue Engineering, Patrick C.W., Mikos A.G., McIntire L.V. (eds.), Pergamon Press, Amsterdam, 1998.

    Google Scholar 

  13. Fung Y.C., Biomechanics: Mechanical Properties of Living Tissues, 2nd Edition, Springer Verlag, New York, 1993.

    Google Scholar 

  14. Cavallaro J.F., kemp P.D., Kraus K.H., Collagen fabrics as biomaterials, Biotechnology and Bioengineering, 43, 1994, p. 781–791.

    Article  Google Scholar 

  15. Underwood S. et al., The physical properties of a fibrillar fibronectin-based material with potential use in tissue engineering, Bioprocess Engineering, 20, 1999, p. 239–248.

    Article  Google Scholar 

  16. de Haan J., Structure-property relations in plain weft-knitted fabric reinforced composites (KFRCs) preparing for load bearing implants: experimental study and beam model approach, Biocompatible Materials Science and Engineering, ETH Zürich, Switzerland, Thesis No. 13042, 1999.

    Google Scholar 

  17. Wintermantel E., Mayer J., Blum J., Eckert K.-L., Lüscher P., Mathey M., Tissue engineering scaffolds using superstructures, Biomaterials, 17, 2, 1996, p. 83–91.

    Article  Google Scholar 

  18. Bonassar L.J., Vacanti C.A., Tissue engineering: the first decade and beyond, Journal of Cellular Biochemistry, Supplement, 30–31, 1998, p. 297–303.

    Google Scholar 

  19. Freed L.E., Vunjak-Novakovic G., Biron R.J., Eagles D.B., Lesnoy D.C., Barlow S.K., Langer R., Biodegradable polymer scaffolds for tissue engineering, Biotechnology, 12, 1994, p. 689–693.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Karamuk, E., Mayer, J., Wintermantel, E. (2009). Sticktechnologie für medizinische Textilien und Tissue Engineering. In: Wintermantel, E., Ha, SW. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93936-8_42

Download citation

Publish with us

Policies and ethics