Skip to main content

Automatic Classification of Embryonic Fruit Fly Gene Expression Patterns

  • Conference paper
Bildverarbeitung für die Medizin 2009

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

Carefully studied in-situ hybridization Gene expression patterns (GEP) can provide a first glance at possible relationships among genes. Automatic comparative analysis tools are an indispensable requirement to manage the constantly growing amount of such GEP images. We present here an automated processing pipeline for Segmenting, Classification, and Clustering large-scale sets of Drosophila melanogaster GEP images that facilitates automatic GEP analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gawantka V, Pollet N, Delius H, et al. Gene expression screening in Xenopus identifies molecular pathways, predicts gene function and provides a global view of embryonic patterning. Mech Dev. 1998;77:95–141.

    Article  Google Scholar 

  2. Neidhardt L, Gasca S, Wertz K, et al. Large-scale screen for genes controlling mammalian embryogenesis, using high-throughput gene expression analysis in mouse embryos. Mech Dev. 2000;98:77–93.

    Article  Google Scholar 

  3. Kudoh T, Tsang M, Hukriede NA, et al. A gene expression screen in zebrafish embryogenesis. Genome Res. 2001;11:1979–1987.

    Article  Google Scholar 

  4. Tomancak P, Beaton A, Weiszmann R, et al. Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biology. 2002;3:0088.

    Article  Google Scholar 

  5. Schubert W, Bonnekoh B, Pommer AJ, et al. Analyzing proteome topology and function by automated multidimensional fluorescence microscopy. Nat Biotechnol. 2006;24:1270–1278.

    Article  Google Scholar 

  6. BDGP: Berkeley Drosophila Genome Project. http://www.fruitfly.org/.

    Google Scholar 

  7. Tomancak P, Berman BP, Beaton A, et al. Global analysis of patterns of gene expression during Drosophila embryogenesis. Genome Biology. 2007;8:R145.

    Article  Google Scholar 

  8. Montalta-He H, Reichert H. Impressive expressions: Developing a systematic database of gene-expression patterns in Drosophila embryogenesis. Genome Biology. 2003; p. 205–205.

    Google Scholar 

  9. FlyBase: A Database of Drosophila Genes and Genomes. http://flybase.bio.indiana.edu/.

    Google Scholar 

  10. Van Emden B, Ramos H, Panchanathan S, et al. FlyExpress: An image-matching web-tool for finding genes with overlapping patterns of expression in Drosophila embryos; 2006. www.flyexpress.net.

    Google Scholar 

  11. Kumar S, Jayaraman K, Panchanathan S, et al. BEST: A novel computational approach for comparing gene expression patterns from early stages of Drosophila melanogaster development. Genetics. 2002;162:2037–2047.

    Google Scholar 

  12. Peng H, Myers EW. Comparing in situ mRNA expression patterns of Drosophila embryos. In: Proc Int Conf Res Comput Mol Biol; 2004. p. 157–166.

    Google Scholar 

  13. Peng H, Long F, Zhou J, et al. Automatic image analysis for gene expression patterns of fly embryos. BMC Cell Biology. 2007;8(Suppl 1):S7.

    Article  Google Scholar 

  14. Heffel A, Stadler PF, Prohaska SJ, et al. Process flow for classification and clustering of fruit fly gene expression patterns. Proc IEEE ICIP. 2008; p. 721. http://www-video.eecs.berkeley.edu/Proceedings/ICIP2008/ICIP2008.html.

    Google Scholar 

  15. Pernkopf F, Bouchaffra D. Genetic-based EM algorithm for learning Gaussian mixture models. IEEE Trans Pattern Anal Mach Intell. 2005;27:1344–1348.

    Article  Google Scholar 

  16. Moon TK. The expectation-maximization algorithm. IEEE Signal Processing Magazine. 1996;(6):47–60.

    Google Scholar 

  17. Xu C, Prince JL. Snakes, shapes, and gradient vector flow. IEEE Trans Image Process. 1998;7:359–369.

    Article  MATH  MathSciNet  Google Scholar 

  18. Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. Int J Computer Vis. 2004;1:321–331.

    Article  Google Scholar 

  19. Gottesfeld Brown L. A survey of image registration techniques. ACM Computing Surveys. 1992;24:325–376.

    Article  Google Scholar 

  20. Braumann UD, Kuska JP. A new equation for nonlinear image registration with control over the vortex structure in the displacement field. Proc IEEE Int Conf Image Process. 2006; p. 329–332.

    Google Scholar 

  21. Braumann UD, Kuska JP. Influence of the boundary conditions on the result of non-linear image registration. Proc IEEE Int Conf Image Process. 2005; p. I–1129–I–1132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heffel, A., Prohaska, S.J., Stadler, P.F., Kauer, G., Kuska, JP. (2009). Automatic Classification of Embryonic Fruit Fly Gene Expression Patterns. In: Meinzer, HP., Deserno, T.M., Handels, H., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2009. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93860-6_84

Download citation

Publish with us

Policies and ethics