# Fuzzy Cluster Analysis from the Viewpoint of Robust Statistics

• Frank Klawonn
• Frank Höppner
Chapter
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 243)

## Introduction

Fuzzy cluster analysis has been initiated in the beginning of the seventies by Bezdek [1], [3] and Dunn [12]. The ideas were partly motivated by the problems caused by the binary or crisp assignment of data to unique clusters as for instance in the case of the popular c-means clustering algorithm. Handling ambiguous and noisy data in order to overcome these problems was one important issue.

Although such concepts of robustness were part of the motivation for introducing fuzzy clustering, serious attempts to a rigorous analysis of robustness issues in fuzzy clustering have not been made until the mid-nineties.

## Keywords

Fuzzy Cluster Membership Degree Robust Regression Robust Statistic Breakdown Point
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Bezdek, J.C.: Fuzzy Mathematics in Pattern Classification. Ph.D. Thesis, Applied Mathematical Center, Cornell University, Ithaca (1973)Google Scholar
2. 2.
Bezdek, J.C.: A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithm. IEEE Transactions Pattern Analysis and Machine Intelligence 2, 1–8 (1980)
3. 3.
Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)
4. 4.
Bezdek, J.C., Hathaway, R.H., Sabin, M.J., Tucker, W.T.: Convergence Theory for Fuzzy c-Means: Counterexamples and Repairs. IEEE Transactions Systems, Man, and Cybernetics 17, 873–877 (1987)
5. 5.
Bezdek, J.C., Keller, J., Krishnapuram, R., Pal, N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer, Boston (1999)
6. 6.
Bock, H.H.: Clusteranalyse mit unscharfen Partitionen. In: Bock, H.H. (ed.) Klassifikation und Erkenntnis. Numerische Klassifikation, vol. III, pp. 137–163. Frankfurt, INDEKS (1979)Google Scholar
7. 7.
Choi, Y., Krishnapuram, R.: Fuzzy and Robust Formulation of Maximum-Likelihood-Based Gaussian Mixture Decomposition. In: IEEE Conference on Fuzzy Systems, New Orleans, pp. 1899–1905 (1996)Google Scholar
8. 8.
Davé, R.N.: Characterization and Detection of Noise in Clustering. Pattern Recognition Letters 12, 657–664 (1991)
9. 9.
Davé, R.N., Krishnapuram, R.: Robust Clustering Methods: A Unified View. IEEE Transactions on Fuzzy Systems 5, 270–293 (1997)
10. 10.
Dempster, A., Laird, N., Rubin, D.: Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society 39, 1–38 (1977)
11. 11.
Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, New York (1973)
12. 12.
Dunn, J.C.: A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact, Well Separated Clusters. Journal of Cybernetics 3, 32–57 (1973)
13. 13.
Flores-Sintas, A., Cadenas, J.M., Martin, F.: Membership Functions in the Fuzzy c-Means Algorithm. Fuzzy Sets and Systems 101, 49–58 (1999)
14. 14.
Gustafson, D.E., Kessel, W.C.: Fuzzy Clustering with a Fuzzy Covariance Matrix. In: Proceedings IEEE CDC, San Diego, pp. 761–766 (1979)Google Scholar
15. 15.
Hoaglin, D.C., Mosteller, F., Tukey, J.W.: Understanding Robust and Exploratory Data Analysis. Wiley, New York (2000)
16. 16.
Höppner, F., Klawonn, F.: A Contribution to Convergence Theory of Fuzzy c-Means and its Derivatives. IEEE Transactions on Fuzzy Systems 11, 682–694 (2003)
17. 17.
Höppner, F., Klawonn, F., Kruse, R., Runkler, T.: Fuzzy Cluster Analysis. Wiley, Chichester (1999)
18. 18.
Huber, P.J.: Robust Statistics. Wiley, New York (2004)Google Scholar
19. 19.
Keller, A.: Fuzzy Clustering with Outliers. In: Proceedings of NAFIPS 2000: 19th International Conference of the North American Fuzzy Information Processing Society, Atlanta, pp. 143–147 (2000)Google Scholar
20. 20.
Klawonn, F.: Fuzzy Clustering: Insights and a New Approach. Mathware and Soft Computing 11, 125–142 (2004)
21. 21.
Klawonn, F.: Understanding and Controlling the Membership Degrees in Fuzzy Clustering. In: Spiliopoulou, M., Kruse, R., Borgelt, C., Nürnberger, A., Gaul, W. (eds.) From Data and Information Analysis to Knowledge Engineering, pp. 446–453. Springer, Berlin (2006)
22. 22.
Klawonn, F., Höppner, F.: What is Fuzzy About Fuzzy Clustering? Understanding and Improving the Concept of the Fuzzifier. In: Berthold, M.R., Lenz, H.-J., Bradley, E., Kruse, R., Borgelt, C. (eds.) Advances in Intelligent Data Analysis, vol. V, pp. 254–264. Springer, Berlin (2003)Google Scholar
23. 23.
Klawonn, F., Höppner, F.: An Alternative Approach to the Fuzzifier in Fuzzy Clustering to Obtain Better Clustering Results. In: Proceedings of the 3rd Eusflat Conference, Zittau, pp. 730–734 (2003)Google Scholar
24. 24.
Klawonn, F., Kruse, R., Timm, H.: Fuzzy Shell Cluster Analysis. In: Della Riccia, G., Lenz, H.J., Kruse, R. (eds.) Learning, Networks and Statistics, pp. 105–120. Springer, Wien (1997)Google Scholar
25. 25.
Krishnapuram, R., Frigui, H., Nasraoui, O.: Fuzzy and Possibilistic Shell Clustering Algorithms and Their Application to Boundary Detection and Surface Approximation. Part 1 & 2. IEEE Transactions on Fuzzy Systems 3, 29–60 (1995)
26. 26.
Krishnapuram, R., Keller, J.: A Possibilistic Approach to Clustering. IEEE Transactions on Fuzzy Systems 1, 98–110 (1993)
27. 27.
Nasraoui, O., Krishnapuram, R.: Crisp Interpretation of Fuzzy and Possibilistic Clustering Algorithms. In: 3rd European Congress on Intelligent Techniques and Soft Computing, Aachen, vol. 3, pp. 1312–1318 (1995)Google Scholar
28. 28.
Timm, H., Kruse, R.: A Modification to Improve Possibilistic Fuzzy Cluster Analysis. In: FUZZ-IEEE 2002: Proceedings of the 2002 IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1460–1465 (2002)Google Scholar