Advertisement

Dialogue Games as Foundation of Fuzzy Logics

  • Christian G. Fermüller
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 243)

Introduction

This chapter deals with fuzzy logic in Zadeh’s ‘narrow sense’ [27], pointing to t-norm based truth functional logics, where the truth values model ‘degrees of truth’, identified with reals from the unit interval [0,1]. In particular, we are interested in Łukasiewicz logic Ł and some of its variants, but also in Gödel logic G, and in Product logic P. The literature on formal deduction systems for these and related many-valued logics is vast and even more has been written about their algebraic background. We refer to the monographs [23], [22], and [10] for more information and references. Most authors take the usefulness of these logics in the context of approximate reasoning, i.e., reasoning with vague and imprecise notions for granted. However the corresponding proof systems are hardly ever explicitly related to models of correct reasoning with vague information. In other words: the challenge to derive particular fuzzy logics from first principles about approximate reasoning is not addressed explicitly. The reference to general models of reasoning and to theories of vagueness – a prolific discourse in contemporary analytic philosophy – is only implicit, if not simply missing, in most presentations of inference systems for fuzzy logics. Some notable exceptions, where an explicit semantic foundation for particular fuzzy logics is aimed at, are: Ruspini’s similarity semantics [35]; voting semantics [25]; ‘re-randomizing semantics’ [24]; measurement-theoretic justifications [7]; the Ulam-Rényi game based interpretation of D. Mundici [29]; and ‘acceptability semantics’ of J. Paris [31]. As we have argued elsewhere [12], these formal semantics for various t-norm based logics (in particular Łukasiewicz logic) should be placed in the wider discourse about adequate theories of vagueness, a prolific subfield of analytic philosophy.

Keywords

Fuzzy Logic Elementary State Atomic Formula Intuitionistic Logic Winning Strategy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramsky, S., McCusker, G.: Game semantics. In: Schwichtenberg, H., Berger, U. (eds.) Computational Logic, pp. 1–56. Springer, Berlin (1999)Google Scholar
  2. 2.
    Avron, A.: Hypersequents, logical consequence and intermediate logics for concurrency. Annals of Mathematics and Artificial Intelligence 4(3-4), 225–248 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Baaz, M., Ciabattoni, A., Fermüller, C.G.: Cut-elimination in a sequents-of-relations calculus for Gödel logic. In: 31st International Symposium on Multiple Valued Logic (ISMVL 2001), pp. 181–186. IEEE, Los Alamitos (2001)Google Scholar
  4. 4.
    Baaz, M., Fermüller, C.G.: Analytic calculi for projective logics. In: Murray, N.V. (ed.) TABLEAUX 1999. LNCS (LNAI), vol. 1617, pp. 36–50. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  5. 5.
    Barth, E.M., Krabbe, E.C.W.: From Axiom to Dialogue. De Gruyter, Berlin (1982)zbMATHGoogle Scholar
  6. 6.
    van Benthem, J.: Logic in Game (Book) (in preparation)Google Scholar
  7. 7.
    Bilgic, T., Türksen, I.B.: Measurement-theoretic justification of connectives in fuzzy set theory. Fuzzy Sets and Systems 76(3), 289–308 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Blass, A.: A game semantics for linear logic. Annals of Pure and Applied Logic (56), 183–220 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Ciabattoni, A., Fermüller, C.G., Metcalfe, G.: Uniform rules and dialogue games for fuzzy logics. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 496–510. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. Kluwer, Dordrecht (2000)zbMATHGoogle Scholar
  11. 11.
    Felscher, W.: Dialogues, strategies, and intuitionistic provability. Annals of Pure and Applied Logic (28), 217–254 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fermüller, C.G.: Theories of vagueness versus fuzzy logic: Can logicians learn from philosophers? Neural Network World 13(5), 455–466 (2003)Google Scholar
  13. 13.
    Fermüller, C.G.: Parallel Dialogue Games and Hypersequents for Intermediate Logics. In: Cialdea Mayer, M., Pirri, F. (eds.) TABLEAUX 2003. LNCS, vol. 2796, pp. 48–64. Springer, Heidelberg (2003)Google Scholar
  14. 14.
    Fermüller, C.G., Ciabattoni, A.: From Intuitionistic Logic to Gödel-Dummett Logic via Parallel Dialogue Games. In: 33rd International Symposium on Multiple Valued Logic (ISMVL 2003), Meiji University, Tokyo, Japan, pp. 188–195. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  15. 15.
    Fermüller, C.G.: Dialogue Games for Modelling Proof Search in Nonclassical Logics. In: Dahn, I., Vigneron, L. (eds.): FTP 2003, International Workshop on First-Order Theorem Proving, Technical Report DISC-II/10/03, Universidad de Politécnica de ValenciaGoogle Scholar
  16. 16.
    Fermüller, C.G., Preining, N.: A Dialogue Game for Intuitionistic Fuzzy Logic Based on Comparisons of Degrees of Truth. In: Proceedings InTech 2003 (2003)Google Scholar
  17. 17.
    Fermüller, C.G., Kosik, R.: Combining Supervaluation and Degree Based Reasoning Under Vagueness. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp. 212–226. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  18. 18.
    Fine, K.: Vagueness, truth and logic. Synthése (30), 265–300 (1975)zbMATHCrossRefGoogle Scholar
  19. 19.
    Giles, R.: A non-classical logic for physics. Studia Logica 4(33), 399–417 (1974)MathSciNetGoogle Scholar
  20. 20.
    Giles, R.: Łukasiewicz logic and fuzzy set theory. International Journal of Man-Machine Studies 8(3), 313–327 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Giles, R.: A non-classical logic for physics. In: Wojcicki, R., Malinkowski, G. (eds.) Selected Papers on Łukasiewicz Sentential Calculi, pp. 13–51. Polish Academy of Sciences, Ossolinskich, Wroclaw (1977)Google Scholar
  22. 22.
    Gottwald, S.: A Treatise on Many-Valued Logics, vol. 9. Research Studies Press, Baldock (2001)zbMATHGoogle Scholar
  23. 23.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)zbMATHGoogle Scholar
  24. 24.
    Hisdal, E.: Are grades of membership probabilities? Fuzzy Sets and Systems (25), 325–348 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Lawry, J.: A voting mechanism for fuzzy logic. The International Journal of Approximate Reasoning (19), 315–333 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Lorenzen, P.: Logik und Agon. In: Atti del XII Congresso Internazionale di Filosofia, Venezia, september 12-18, 1958, pp. 187–194. Sansoni, Firenze (1960)Google Scholar
  27. 27.
    Marks, R.J. (ed.): Fuzzy logic technology and applications. IEEE technology updates. IEEE Press, Piscataway (1994)Google Scholar
  28. 28.
    Metcalfe, G., Olivetti, N., Gabbay, D.: Analytic sequent calculi for abelian and Łukasiewicz logics. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 191–205. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  29. 29.
    Mundici, D.: Ulam’s game, Łukasiewicz logic and C ∗ -algebras. Fundamenta Informaticae (18), 151–161 (1993)zbMATHMathSciNetGoogle Scholar
  30. 30.
    Novák, V., Perfilieva, I., Mockor, J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston (1999)zbMATHGoogle Scholar
  31. 31.
    Paris, J.B.: Semantics for fuzzy logic. Soft Computing (1), 143–147 (1997)MathSciNetGoogle Scholar
  32. 32.
    Pavelka, J.: On fuzzy logic I, II, III. Zeitschrift für Mathematische Logik und Grundlagenforschung der Mathematik 25, 45–52, 119–134, 447–464 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Pottinger, G.: Uniform, cut-free formulations of T, S4, and S5 (abstract). Journal of Symbolic Logic 48(3), 900 (1983)Google Scholar
  34. 34.
    Rahman, S., Rückert, H. (eds.): Special issue on ‘Dialogic Logic’. Synthese (127), 1–2 (2001)CrossRefGoogle Scholar
  35. 35.
    Ruspini, E.H.: On the semantics of fuzzy logic. International Journal of Approximate Reasoning 5, 45–88 (1991)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Christian G. Fermüller
    • 1
  1. 1.No Affiliations 

Personalised recommendations