Fuzzy Logic as a Theory of Vagueness: 15 Conceptual Questions

  • Jeremy Bradley
Part of the Studies in Fuzziness and Soft Computing book series (STUDFUZZ, volume 243)


Fuzzy logic has successfully established itself as an engineering tool. Though its purpose and validity in any context were highly controversial in the early years, this initial criticism was defused by the practical success of fuzzy set theory, to a large degree under the name of “fuzzy logic”. This began with Assilian’s and Mamdani’s steam engine in the 1970s [22] and has extended over an ever-expanding range of applications, from noodle cookers to washing machines, up to the present day. The history of fuzzy set theory’s birth, development and progression has been documented by Rudolf Seising in his book The Fuzzification of Systems [32].


Natural Language Fuzzy Logic Classical Logic Fuzzy Environment Product Logic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Behounek, L.: An alternative justification of the axioms of fuzzy logics. The Bulletin of Symbolic Logic (to appear)Google Scholar
  2. 2.
    Bennett, A.D.C., Paris, J.B., Vencovská, A.: A new criteria for comparing fuzzy logics for uncertain reasoning. Journal of Logic, Language, and Information (9), 31–63 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bezdek, J.C.: Fuzzy Mathematics in Pattern Classification. Ph. D. Thesis, Center for Aplied Mathematics, Cornell University, Ithaca, New York (1973)Google Scholar
  4. 4.
    Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)zbMATHGoogle Scholar
  5. 5.
    Cignoli, R., D’Ottaviano, I.M.L., Mundici, D.: Algebraic Foundations of Many-valued Reasoning. In: Trends in Logic, vol. 7. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  6. 6.
    Edgington, D.: Vagueness by Degrees. In: Keefe, R., Smith, P. (eds.) Vagueness: A Reader, pp. 294–316. MIT Press, Cambridge (1997)Google Scholar
  7. 7.
    Elkan, C.: The Paradoxical Success of Fuzzy Logic. In: Fikes, R., Lehnert, W. (eds.) Proceedings of the Eleventh National Conference on Artificial Intelligence, pp. 698–703. AAAI Press, Menlo Park (1993)Google Scholar
  8. 8.
    Fermüller, C.: Revisiting Giles: Connecting Bets, Dialogue Games, and Fuzzy Logics. In: Logic, Games and Philosophy: Foundational Perspectives. Logic, Epistemology and the Unity of Sciences. Springer, Berlin (to appear)Google Scholar
  9. 9.
    Fine, K.: Vagueness, Truth and Logic. Synthese (30), 265–300 (1975)zbMATHCrossRefGoogle Scholar
  10. 10.
    Giles, R.: A non-classical logic for physics. Studia Logica 33(4), 399–417 (1974)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Giles, R.: A non-classical logic for physics. In: Wojcicki, R., Malinkowski, G. (eds.) Selected Papers on Łukasiewicz Sentential Calculi, pp. 13–51. Polish Academy of Sciences (1997)Google Scholar
  12. 12.
    Graff, D.: Shifting Sands: An Interest-Relative Theory of Vagueness. Philosophical Topics (28), 45–81 (2002)Google Scholar
  13. 13.
    Graff, D.: Phenomenal Continua and the Sorites. Mind (110), 905–935 (2001)CrossRefGoogle Scholar
  14. 14.
    Graff, D.: Gap Principles, Penumbral Consequence, and Infinitely Higher-Order Vagueness. In: Beall, J.C. (ed.) Liars and Heaps: New Essays on Paradox, pp. 195–221. Oxford University Press, Oxford (2003)Google Scholar
  15. 15.
    Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Zeitschrift für Physik (43), 172–198 (1927)CrossRefGoogle Scholar
  16. 16.
    Keefe, R.: Theories of Vagueness. Cambridge University Press, Cambridge (2000)Google Scholar
  17. 17.
    Klement, E.P., Mesiar, R., Pap, E.: Bausteine der Fuzzy Logic: T-Normen – Eigenschaften und Darstellungssätze. In: Seising, R. (ed.) Fuzzy Theorie und Statistik – Modelle und Anwendungen in der Diskussion (Computational Intelligence), pp. 127–225. Vieweg, Braunschweig (1999)Google Scholar
  18. 18.
    Lakoff, G.: Hedges: A Study in Meaning Criteria and the Logic of Fuzzy Concepts. Journal of Philosophical Logic (2), 458–508 (1973)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Majer, O., Behounek, L., Cintula, P.: Uncertainty: Reasoning about probability and vagueness (2006),
  20. 20.
    Mamdani, E.H.: Twenty Years of Fuzzy Control: Experience Gained and Lessons Learnt. IEEE Transactions on Fuzzy Systems 1, 19–24 (1993)Google Scholar
  21. 21.
    Mamdani, E.H.: Advances in the Linguistic Synthesis of Fuzzy Controllers. International Journal of Man-Machine Studies 8, 669–678 (1976)zbMATHCrossRefGoogle Scholar
  22. 22.
    Mamdani, E.H., Assilian, S.: An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies 7(1), 1–13 (1975)zbMATHCrossRefGoogle Scholar
  23. 23.
    Mendel, J.M., John, R.I.: Type-2 Fuzzy Sets Made Simple. IEEE Transactions on Fuzzy Systems 10(2), 117–127 (2002)CrossRefGoogle Scholar
  24. 24.
    Mendel, J.M.: Type-2 Fuzzy Sets: Some Questions and Answers, pp. 10–13. IEEE Computer Society Press, Los Alamitos (2003)Google Scholar
  25. 25.
    Novák, V.: Which Logic is the Real Fuzzy Logic? Fuzzy Sets and Systems (157), 635–641 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Novák, V.: Are Fuzzy Sets a Reasonable Tool for Modeling Vague Phenomena? Fuzzy Sets and Systems (156), 635–641 (2005)CrossRefGoogle Scholar
  27. 27.
    Novák, V.: Fuzzy Sets as a Special Mathematical Model of Vagueness Phenomenon. In: Reusch, B. (ed.) Computational Intelligence, Theory and Applications, pp. 683–690. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Paris, J.B.: A semantics for fuzzy logic. Soft Computing (1), 143–147 (1997)MathSciNetGoogle Scholar
  29. 29.
    Raffman, D.: Vagueness and Context-Relativity. Philosophical Studies (81), 175–192 (1996)CrossRefGoogle Scholar
  30. 30.
    Raffman, D.: Is Perceptual Indiscriminability Nontransitive? Philosophical Topics (28), 153–176 (2002)Google Scholar
  31. 31.
    Ruspini, E.H.: On the semantics of fuzzy logic. International Journal of Approximate Reasoning (5), 45–88 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  32. 32.
    Seising, R.: The Fuzzification of Systems. The Genesis of Fuzzy Set Theory and its Initial Applications – Developments up to the 1970s. Studies in Fuzziness and Soft Computing, vol. 216. Springer, Berlin (2007)zbMATHGoogle Scholar
  33. 33.
    Seising, R., Bradley, J.: The Gap Between Scientific Theory and Application: Black and Zadeh: Vagueness and Fuzzy Sets. In: Demirli, K., Akgunduz, A. (eds.) Proceedings the 2006 Conference of the North American Fuzzy Information Processing Society (NAFIPS 2006, CD), Montreal (June 2006)Google Scholar
  34. 34.
    Seising, R., Bradley, J.: From vague or loose concepts to hazy and fuzzy sets – human understanding versus exact science. In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS, vol. 4253, pp. 374–382. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  35. 35.
    Seising, R., Bradley, J.: Are Soft Computing and Its Applications in Technology and Medicine Human-Friendly? In: Gabrys, B., Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4253. Springer, Heidelberg (2006)Google Scholar
  36. 36.
    Shapiro, S.: Vagueness in Context. Oxford University Press, New York (2006)CrossRefGoogle Scholar
  37. 37.
    Shapiro, S.: Vagueness and Converstion. In: Beall, J.C. (ed.) Liars and Heaps: New Essays on the Semantics of Paradox. Oxford University Press, Oxford (2003)Google Scholar
  38. 38.
    Sorensen, R.: Vagueness. In: Stanford Encyclopedia of Philosophy (2006),
  39. 39.
    Trillas, E.: Menger’s Trace in Fuzzy Logic. Segunda Épocha 11(7), 89–96 (1996)zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jeremy Bradley
    • 1
  1. 1.No Affiliations 

Personalised recommendations