Skip to main content

Localization of Lesions in Dermoscopy Images Using Ensembles of Thresholding Methods

  • Conference paper
  • 3397 Accesses

Part of the Lecture Notes in Computer Science book series (LNIP,volume 5414)


Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, automated analysis of dermoscopy images has become an important research area. Border detection is often the first step in this analysis. In this article, we present an approximate lesion localization method that serves as a preprocessing step for detecting borders in dermoscopy images. In this method, first the black frame around the image is removed using an iterative algorithm. The approximate location of the lesion is then determined using an ensemble of thresholding algorithms. Experiments on a large set of images demonstrate that the presented method achieves both fast and accurate localization of lesions in dermoscopy images.


  • Markov Random Field
  • Thresholding Method
  • Thresholding Algorithm
  • Computerize Medical Imaging
  • Border Detection

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Jemal, A., Siegel, R., Ward, E., et al.: Cancer Statistics. CA: A Cancer Journal for Clinicians 2008 58(2), 71–96 (2008)

    Google Scholar 

  2. Argenziano, G., Soyer, H.P., De Giorgi, V., et al.: Dermoscopy: A Tutorial. EDRA Medical Publishing & New Media, Milan (2002)

    Google Scholar 

  3. Steiner, K., Binder, M., Schemper, M., et al.: Statistical Evaluation of Epiluminescence Dermoscopy Criteria for Melanocytic Pigmented Lesions. Journal of American Academy of Dermatology 29(4), 581–588 (1993)

    CrossRef  Google Scholar 

  4. Binder, M., Schwarz, M., Winkler, A., et al.: Epiluminescence Microscopy. A Useful Tool for the Diagnosis of Pigmented Skin Lesions for Formally Trained Dermatologists. Archives of Dermatology 131(3), 286–291 (1995)

    CrossRef  Google Scholar 

  5. Fleming, M.G., Steger, C., Zhang, J., et al.: Techniques for a Structural Analysis of Dermatoscopic Imagery. Computerized Medical Imaging and Graphics 22(5), 375–389 (1998)

    CrossRef  Google Scholar 

  6. Celebi, M.E., Kingravi, H.A., Uddin, B., et al.: A Methodological Approach to the Classification of Dermoscopy Images. Computerized Medical Imaging and Graphics 31(6), 362–373 (2007)

    CrossRef  Google Scholar 

  7. Iyatomi, H., Oka, H., Saito, M., et al.: Quantitative Assessment of Tumor Extraction from Dermoscopy Images and Evaluation of Computer-based Extraction Methods for Automatic Melanoma Diagnostic System. Melanoma Research 16(2), 183–190 (2006)

    CrossRef  Google Scholar 

  8. Celebi, M.E., Aslandogan, Y.A., Stoecker, W.V., et al.: Unsupervised Border Detection in Dermoscopy Images. Skin Research and Technology 13(4), 454–462 (2007)

    CrossRef  Google Scholar 

  9. Celebi, M.E., Kingravi, H.A., Iyatomi, H., et al.: Border Detection in Dermoscopy Images Using Statistical Region Merging. Skin Research and Technology 14(3), 347–353 (2008)

    CrossRef  Google Scholar 

  10. Lee, T.K., Ng, V., Gallagher, R., et al.: Dullrazor: A Software Approach to Hair Removal from Images. Computers in Biology and Medicine 27(6), 533–543 (1997)

    CrossRef  Google Scholar 

  11. Stoecker, W.V., Gupta, K., Stanley, R.J., et al.: Detection of Asymmetric Blotches in Dermoscopy Images of Malignant Melanoma Using Relative Color. Skin Research and Technology 11(3), 179–184 (2005)

    CrossRef  Google Scholar 

  12. Celebi, M.E., Iyatomi, H., Stoecker, W.V., et al.: Automatic Detection of Blue-White Veil and Related Structures in Dermoscopy Images. Computerized Medical Imaging and Graphics 32(8) (to appear, 2008)

    Google Scholar 

  13. Melgani, F.: Robust Image Binarization with Ensembles of Thresholding Algorithms. Journal of Electronic Imaging 15(2), 023010, 11 pages (2006)

    Google Scholar 

  14. Otsu, N.: A Threshold Selection Method from Gray Level Histograms. IEEE Trans. on Systems, Man and Cybernetics 9(1), 62–66 (1979)

    MathSciNet  CrossRef  Google Scholar 

  15. Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Graphical Models and Image Processing 29(3), 273–285 (1985)

    CrossRef  Google Scholar 

  16. Huang, L.-K., Wang, M.-J.J.: Image Thresholding by Minimizing the Measures of Fuzziness. Pattern Recognition 28(1), 41–51 (1995)

    CrossRef  Google Scholar 

  17. Yen, J.C., Chang, F.J., Chang, S.: A New Criterion for Automatic Multilevel Thresholding. IEEE Trans. on Image Processing 4(3), 370–378 (1995)

    MathSciNet  CrossRef  Google Scholar 

  18. Sahoo, P.K., Wilkins, C., Yeager, J.: Threshold Selection Using Renyi’s Entropy. Pattern Recognition 30(1), 71–84 (1997)

    CrossRef  MATH  Google Scholar 

  19. Li, C.H., Tam, P.K.S.: An Iterative Algorithm for Minimum Cross Entropy Thresholding. Pattern Recognition Letters 18(8), 771–776 (1998)

    CrossRef  MATH  Google Scholar 

  20. Hance, G.A., Umbaugh, S.E., Moss, R.H., Stoecker, W.V.: Unsupervised Color Image Segmentation with Application to Skin Tumor Borders. IEEE Engineering in Medicine and Biology 15(1), 104–111 (1996)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Celebi, M.E., Iyatomi, H., Schaefer, G., Stoecker, W.V. (2009). Localization of Lesions in Dermoscopy Images Using Ensembles of Thresholding Methods. In: Wada, T., Huang, F., Lin, S. (eds) Advances in Image and Video Technology. PSIVT 2009. Lecture Notes in Computer Science, vol 5414. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92956-7

  • Online ISBN: 978-3-540-92957-4

  • eBook Packages: Computer ScienceComputer Science (R0)