Localization of Lesions in Dermoscopy Images Using Ensembles of Thresholding Methods

  • M. Emre Celebi
  • Hitoshi Iyatomi
  • Gerald Schaefer
  • William V. Stoecker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


Dermoscopy is one of the major imaging modalities used in the diagnosis of melanoma and other pigmented skin lesions. Due to the difficulty and subjectivity of human interpretation, automated analysis of dermoscopy images has become an important research area. Border detection is often the first step in this analysis. In this article, we present an approximate lesion localization method that serves as a preprocessing step for detecting borders in dermoscopy images. In this method, first the black frame around the image is removed using an iterative algorithm. The approximate location of the lesion is then determined using an ensemble of thresholding algorithms. Experiments on a large set of images demonstrate that the presented method achieves both fast and accurate localization of lesions in dermoscopy images.


Markov Random Field Thresholding Method Thresholding Algorithm Computerize Medical Imaging Border Detection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Jemal, A., Siegel, R., Ward, E., et al.: Cancer Statistics. CA: A Cancer Journal for Clinicians 2008 58(2), 71–96 (2008)Google Scholar
  2. 2.
    Argenziano, G., Soyer, H.P., De Giorgi, V., et al.: Dermoscopy: A Tutorial. EDRA Medical Publishing & New Media, Milan (2002)Google Scholar
  3. 3.
    Steiner, K., Binder, M., Schemper, M., et al.: Statistical Evaluation of Epiluminescence Dermoscopy Criteria for Melanocytic Pigmented Lesions. Journal of American Academy of Dermatology 29(4), 581–588 (1993)CrossRefGoogle Scholar
  4. 4.
    Binder, M., Schwarz, M., Winkler, A., et al.: Epiluminescence Microscopy. A Useful Tool for the Diagnosis of Pigmented Skin Lesions for Formally Trained Dermatologists. Archives of Dermatology 131(3), 286–291 (1995)CrossRefGoogle Scholar
  5. 5.
    Fleming, M.G., Steger, C., Zhang, J., et al.: Techniques for a Structural Analysis of Dermatoscopic Imagery. Computerized Medical Imaging and Graphics 22(5), 375–389 (1998)CrossRefGoogle Scholar
  6. 6.
    Celebi, M.E., Kingravi, H.A., Uddin, B., et al.: A Methodological Approach to the Classification of Dermoscopy Images. Computerized Medical Imaging and Graphics 31(6), 362–373 (2007)CrossRefGoogle Scholar
  7. 7.
    Iyatomi, H., Oka, H., Saito, M., et al.: Quantitative Assessment of Tumor Extraction from Dermoscopy Images and Evaluation of Computer-based Extraction Methods for Automatic Melanoma Diagnostic System. Melanoma Research 16(2), 183–190 (2006)CrossRefGoogle Scholar
  8. 8.
    Celebi, M.E., Aslandogan, Y.A., Stoecker, W.V., et al.: Unsupervised Border Detection in Dermoscopy Images. Skin Research and Technology 13(4), 454–462 (2007)CrossRefGoogle Scholar
  9. 9.
    Celebi, M.E., Kingravi, H.A., Iyatomi, H., et al.: Border Detection in Dermoscopy Images Using Statistical Region Merging. Skin Research and Technology 14(3), 347–353 (2008)CrossRefGoogle Scholar
  10. 10.
    Lee, T.K., Ng, V., Gallagher, R., et al.: Dullrazor: A Software Approach to Hair Removal from Images. Computers in Biology and Medicine 27(6), 533–543 (1997)CrossRefGoogle Scholar
  11. 11.
    Stoecker, W.V., Gupta, K., Stanley, R.J., et al.: Detection of Asymmetric Blotches in Dermoscopy Images of Malignant Melanoma Using Relative Color. Skin Research and Technology 11(3), 179–184 (2005)CrossRefGoogle Scholar
  12. 12.
    Celebi, M.E., Iyatomi, H., Stoecker, W.V., et al.: Automatic Detection of Blue-White Veil and Related Structures in Dermoscopy Images. Computerized Medical Imaging and Graphics 32(8) (to appear, 2008)Google Scholar
  13. 13.
    Melgani, F.: Robust Image Binarization with Ensembles of Thresholding Algorithms. Journal of Electronic Imaging 15(2), 023010, 11 pages (2006)Google Scholar
  14. 14.
    Otsu, N.: A Threshold Selection Method from Gray Level Histograms. IEEE Trans. on Systems, Man and Cybernetics 9(1), 62–66 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Kapur, J.N., Sahoo, P.K., Wong, A.K.C.: A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Graphical Models and Image Processing 29(3), 273–285 (1985)CrossRefGoogle Scholar
  16. 16.
    Huang, L.-K., Wang, M.-J.J.: Image Thresholding by Minimizing the Measures of Fuzziness. Pattern Recognition 28(1), 41–51 (1995)CrossRefGoogle Scholar
  17. 17.
    Yen, J.C., Chang, F.J., Chang, S.: A New Criterion for Automatic Multilevel Thresholding. IEEE Trans. on Image Processing 4(3), 370–378 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Sahoo, P.K., Wilkins, C., Yeager, J.: Threshold Selection Using Renyi’s Entropy. Pattern Recognition 30(1), 71–84 (1997)CrossRefzbMATHGoogle Scholar
  19. 19.
    Li, C.H., Tam, P.K.S.: An Iterative Algorithm for Minimum Cross Entropy Thresholding. Pattern Recognition Letters 18(8), 771–776 (1998)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hance, G.A., Umbaugh, S.E., Moss, R.H., Stoecker, W.V.: Unsupervised Color Image Segmentation with Application to Skin Tumor Borders. IEEE Engineering in Medicine and Biology 15(1), 104–111 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. Emre Celebi
    • 1
  • Hitoshi Iyatomi
    • 2
  • Gerald Schaefer
    • 3
  • William V. Stoecker
    • 4
  1. 1.Department of Computer ScienceLouisiana State UniversityShreveportUSA
  2. 2.Department of Electrical InformaticsHosei UniversityTokyoJapan
  3. 3.School of Engineering and Applied ScienceAston UniversityBirminghamUK
  4. 4.Stoecker & AssociatesRollaUSA

Personalised recommendations