Local Image Descriptors Using Supervised Kernel ICA

  • Masaki Yamazaki
  • Sidney Fels
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)

Abstract

PCA-SIFT is an extension to SIFT which aims to reduce SIFT’s high dimensionality (128 dimensions) by applying PCA to the gradient image patches. However PCA is not a discriminative representation for recognition due to its global feature nature and unsupervised algorithm. In addition, linear methods such as PCA and ICA can fail in the case of non-linearity. In this paper, we propose a new discriminative method called Supervised Kernel ICA (SKICA) that uses a non-linear kernel approach combined with Supervised ICA-based local image descriptors. Our approach blends the advantages of a low dimensionality representation, like PCA-SIFT, with supervised learning based on non-linear properties of kernels to overcome separability limitations of nonlinear representations for recognition. Using five different test data sets we show that the SKICA descriptors produce better object recognition performance than other related approaches with the same dimensionality. The SKICA-based representation has local sensitivity, non-linear independence and high class separability providing an effective method for local image descriptors.

Keywords

Principal Component Analysis Object Recognition Linear Discriminant Analysis Independent Component Analysis Interest Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Fergus, R., Fei-Fei, L., Perona, P., Zisserman, A.: Learning object categories from google’s image search. In: Proc. of IEEE International Conference on Computer Vision., vol. 2, pp. 1816–1823 (2005)Google Scholar
  2. 2.
    Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching in videos. In: Proc. of IEEE International Conference on Computer Vision., vol. 2, pp. 1470–1477 (2003)Google Scholar
  3. 3.
    Lowe, D.G.: Distinctive image features from scale invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition., vol. 2, pp. 506–513 (2004)Google Scholar
  5. 5.
    Hyvarinen, A.: Survey on independent component analysis. Neural Computing Surveys 2, 94–128 (1999)Google Scholar
  6. 6.
    Bell, A.J., Sejnowski, T.J.: The independent components of natural scenes are edge filters. Vision Research 37(23), 3327–3338 (1997)CrossRefGoogle Scholar
  7. 7.
    Bartlett, M.S., Movellan, J.R., Sejnowski, T.J.: Face recognition by independent component analysis. IEEE Transactions on Neural Networks 13(6), 1450–1464 (2002)CrossRefGoogle Scholar
  8. 8.
    Jenssen, R., Eltoft, T.: Independent component analysis for texture segmentation. Journal of Pattern Recognition Society 36(10), 2301–2315 (2003)CrossRefMATHGoogle Scholar
  9. 9.
    Bressan, M., Guillamet, D., Vitria, J.: Using an ICA representation of local color histograms for object recognition. Journal of Pattern Recognition Society 36(3), 691–701 (2003)CrossRefGoogle Scholar
  10. 10.
    Sahambi, H.S., Khorasani, K.: A neural-network appearance-based 3-D object recognition using independent component analysis. IEEE Transactions on Neural Networks 14(1), 138–149 (2003)CrossRefGoogle Scholar
  11. 11.
    Sakaguchi, Y., Ozawa, S., Kotani, M.: Feature Extraction Using Supervised Independent Component Analysis by Maximizing Class Distance. IEEJ Transactions on Electronics, Information and Systems 124(1), 157–163 (2004) (in Japanese)CrossRefGoogle Scholar
  12. 12.
    Liu, Q., Cheng, J., Lu, H., Ma, S.: Modeling Face Appearance With Nonlinear Independent Component Analysis. In: Proc. of IEEE International Conference on Automatic Face and Gesture Recognition, pp. 761–766 (2004)Google Scholar
  13. 13.
    Schalkopf, B., Smola, A., Muller, K.: Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Computation 10(5), 1299–1319 (1998)CrossRefGoogle Scholar
  14. 14.
    Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Computation 12(10), 2385–2404 (2000)CrossRefGoogle Scholar
  15. 15.
    Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 381, 607–609 (1996)CrossRefGoogle Scholar
  16. 16.
    van Hateren, J.H., van der Schaaf, A.: Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. of Royal Society London, ser. B. 265, 359–366 (1998)CrossRefGoogle Scholar
  17. 17.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach testing on 101 object categories. In: Proc. of IEEE CVPR Workshop of Generative Model Based Vision, pp. 178–187 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Masaki Yamazaki
    • 1
  • Sidney Fels
    • 2
  1. 1.Faculty of Information Science and EngineeringRitsumeikan UniversityShigaJapan
  2. 2.Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations