Advertisement

An ROI/xROI Based Rate Control Algorithm in H.264|AVC for Video Telephony Applications

  • Changhee Kim
  • Taeyoung Na
  • Jeongyeon Lim
  • Youngho Joo
  • Kimun Kim
  • Jaewoan Byun
  • Munchurl Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)

Abstract

Channel bandwidth in 3G communication networks is very much limited for video telephony services. Therefore, it is worthwhile to enhance a subjective quality of video contents via ROI based coding. In this paper, An ROI/xROI based rate-control method is proposed, which considers the coding of both the ROI and the extended ROIs (xROI’s) in non-ROI to meet given target bitrates. In the proposed method, the QP values are increasingly assigned in MB wide inside the non-ROI away from ROI. This reduces the abrupt change in visual quality and the amounts of residual signals along the border between ROI and non-ROI. In this regard, the subjective visual quality is enhanced as well as the proposed rate control has flexibility to control the amounts of the output bitstreams. Experimental results show that the proposed scheme can more effectively achieve the average target bitrates with the better subjective quality than the existing rate control algorithm in H.264|AVC by reducing the variation of the output bitstream amounts.

Keywords

ROI xROI rate control H.264|AVC video telephony 

References

  1. 1.
    ISO/IEC 14496-10, Information Technology-Coding of Audio Visual Objects-part 10: Advanced Video Coding (December 2003)Google Scholar
  2. 2.
    Wiegand, T., Sullivan, G.J., Bjontegard, G., Luthra, A.: Overview of the H.264/AVC Video Coding Standard. IEEE Trans. Circuit System. Video Technology 13, 560–576 (2003)CrossRefGoogle Scholar
  3. 3.
    Richardson, I.E.G.: H.264 and MPEG-4 Video Compression, pp. 256–262. Wiley, Chichester (2003)CrossRefGoogle Scholar
  4. 4.
    Li, Z.G., Gao, W., Pan, F.: Adaptive rate control for H.264. Visual Communication & Image Representation, 376–406 (August 2005)Google Scholar
  5. 5.
    He, Z., Kim, Y.K., Mitra, S.K.: Low-Delay Rate Control for DCT Video Coding via ρ-domain Source Modeling. IEEE Trans. Circuit System. Video Technology 11, 928–940 (2001)CrossRefGoogle Scholar
  6. 6.
    He, Z., Mitra, S.K.: A Unified Rate-Distortion Analysis Framework for Transform coding. IEEE Trans. Circuit System. Video Technology 11, 1221–1236 (2001)CrossRefGoogle Scholar
  7. 7.
    He, Z., Chen, T.: Linear rate control for JVT video coding. In: International Conference on Information Technology. Research and Education, Newark (2003)Google Scholar
  8. 8.
    Leuven, S.V., Schevensteen, K.V., Dams Peter, T.: Implementation of Multiple Region-Of-Interest Models in H.264/AVC. In: SITIS, pp. 502–511 (2006)Google Scholar
  9. 9.
    Li, H., Wang, Z., Cui, H., Tang, K.: An Improved ROI-Based Rate Control Algorithm for H.264/AVC. In: IEEE International Conference on Signal Processing 2006 (2006)Google Scholar
  10. 10.
    Liu, Y., Li, Z.G., Soh, Y.C.: Region-of-Interest Based Resource Allocation for Conversational Video Communication of H.264/AVC. IEEE Trans. Circuit System. Video Technology 18, 134–139 (2008)CrossRefGoogle Scholar
  11. 11.
    Joint Model – H.264/AVC Reference Software, http://iphome.hhi.de/suehring/download

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Changhee Kim
    • 1
  • Taeyoung Na
    • 1
  • Jeongyeon Lim
    • 2
  • Youngho Joo
    • 2
  • Kimun Kim
    • 2
  • Jaewoan Byun
    • 2
  • Munchurl Kim
    • 1
  1. 1.School of EngineeringInformation and Communications UniversityDaejeonKorea
  2. 2.Core Network Development TeamInstitute of Network Technology, SK TelecomKyunggidoKorea

Personalised recommendations