Removal of Specular Reflection Component Using Multi-view Images and 3D Object Model

  • Shu-Kam Chow
  • Kwok-Leung Chan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


Image-based 3D model reconstruction method can use the same multi-view image sequence of the object for the generation of both the geometry model and texture map. Texture is very critical for virtual exhibition of 3D model and should be of high quality comparable to the geometry data. One problem is that the object surface may exhibit specular reflection of illuminated light. The texture extracted directly from the images can be unnatural. We propose a method for the removal of specular reflection component in each image. Each camera view is calibrated and a 3D mesh model of the object is generated. For each triangle patch, the projected colors on all visible views are found. The specular chromaticity is replaced by the corresponding diffuse chromaticity. We test the method on image sequences of synthetic and real objects. The diffuse image sequence can be used to generate the texture map.


specularity removal dichromatic reflection model 3D model reconstruction texture mapping 


  1. 1.
    Pavlidis, G., Koutsoudis, A., Arnaoutoglou, F., Tsioukas, V., Chamzas, C.: Methods for 3D digitization of cultural heritage. Journal of Cultural Heritage 8, 93–98 (2007)CrossRefGoogle Scholar
  2. 2.
    Blais, F., Beraldin, J.-A.: Recent developments in 3D multi-modal laser imaging applied to cultural heritage. Machine Vision and Applications 17, 395–409 (2006)CrossRefGoogle Scholar
  3. 3.
    Klinker, G.J., Shafer, S.A., Kanade, T.: The measurement of highlights in color images. International Journal of Computer Vision 2(1), 7–32 (1990)CrossRefGoogle Scholar
  4. 4.
    Shafer, S.: Using color to separate reflection components. Color Research and Applications 10, 210–218 (1985)CrossRefGoogle Scholar
  5. 5.
    Tan, P., Lin, S., Quan, L., Shum, H.-Y.: Highlight removal by illuminant-constrained inpainting. In: Proceedings of IEEE International Conference on Computer Vision, pp. 164–169 (2003)Google Scholar
  6. 6.
    Tan, P., Lin, S., Quan, L.: Separation of highlight reflections on textured surfaces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 1855–1860 (2006)Google Scholar
  7. 7.
    Tan, R.T., Ikeuchi, K.: Separating reflection components of textured surfaces using a single image. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 178–193 (2005)CrossRefGoogle Scholar
  8. 8.
    Lin, S., Shum, H.-Y.: Separation of diffuse and specular reflection in color images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 341–346 (2001)Google Scholar
  9. 9.
    Lin, S., Li, Y., Kang, S.B., Tong, X., Shum, H.-Y.: Diffuse-specular separation and depth recovery from image sequences. In: Proceedings of European Conference on Computer Vision, pp. 210–224 (2002)Google Scholar
  10. 10.
    Mallick, S.P., Zickler, T., Belhumeur, P.N., Kriegman, D.J.: Specularity removal in images and videos: a pde approach. In: Proceedings of European Conference on Computer Vision, Part I, pp. 550–563 (2006)Google Scholar
  11. 11.
    Yu, T., Xu, N., Ahuja, N.: Shape and view independent reflectance map from multiple views. International Journal of Computer Vision 73(2), 123–138 (2007)CrossRefzbMATHGoogle Scholar
  12. 12.
    Criminisi, A., Kang, S.B., Swaminathan, R., Szeliski, R., Anandan, P.: Extracting layers and analyzing their specular properties using epipolar-plane-image analysis. Computer Vision and Image Understanding 97, 51–85 (2005)CrossRefGoogle Scholar
  13. 13.
    Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. Journal of Robotics and Automation RA-3(4), 323–344 (1987)CrossRefGoogle Scholar
  14. 14.
    Matsumoto, Y., Fujimura, K., Kitamura, T.: Shape-from-silhouette/stereo and its application to 3-D digitizer. In: Proceedings of Discrete Geometry for Computing Imagery, pp. 177–188 (1999)Google Scholar
  15. 15.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. Computer Graphics 21(4), 163–169 (1987)CrossRefGoogle Scholar
  16. 16.
    Tan, R.T., Nishino, K., Ikeuchi, K.: Color constancy through inverse-intensity chromaticity space. Journal of Optical Society of America A 21(3), 321–334 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shu-Kam Chow
    • 1
  • Kwok-Leung Chan
    • 1
  1. 1.Department of Electronic EngineeringCity University of Hong KongHong Kong

Personalised recommendations