Weighted Threshold Secret Image Sharing

  • Shyong Jian Shyu
  • Chun-Chieh Chuang
  • Ying-Ru Chen
  • Ah-Fur Lai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


Given a secret image I, a threshold r, and a set of n ( ≥ r) participants P = {1, 2, ... , n} with a set of weights W = {w 1, w 2, ... , w n } where w i is the weight (which indicates the degree/rank of importance) of participant i and we assume that w 1 ≤ w 2 ≤ ... w n . The idea of weighted threshold secret image sharing encodes I into n shadows S 1, S 2, ..., S n with sizes |S 1| ≤ |S 2| ≤ ... |S n | in which S i is distributed to participant i such that only when a group of r participants can reconstruct I by using their shadows, while any group of less than r participants cannot. We propose a novel weighted threshold secret image sharing scheme based upon Chinese remainder theorem in this paper. As compared to the conventional Shamir’s and recent Thien-Lin’s schemes, which produce shadows with the same size, our scheme is more flexible due to the reason that the dealer is able to distribute various-sized shadows to participants with different degrees/ranks of importance in terms of practical concerns.


Threshold secret sharing Secret image sharing Weighted shadow size Chinese remainder theorem 


  1. 1.
    Asmuth, C., Bloom, J.: A modular approach to key safeguarding. IEEE Transactions on Information Theory IT-29(2), 208–210 (1983)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Blakley, G.R.: Safeguarding cryptographic keys. In: AFIPS Conf. Proc., vol. 48, pp. 313–317 (1979)Google Scholar
  3. 3.
    Brickell, E.F.: Some ideal secret sharing schemes. Journal of Combinatorial Mathematics and Combinatorial Computing 6, 105–113 (1989)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Chang, C.-C., Hwang, R.-J.: Sharing secret images using shadow codebooks. Information Sciences 111(1-4), 335–345 (1998)CrossRefGoogle Scholar
  5. 5.
    Galibus, T., Matveev, G.: Generalized mignotte’s sequences over polynomial rings. Electr. Notes Theor. Comput. Sci. 186, 43–48 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hardy, D.W., Walker, C.L.: Applied Algebra: codes, ciphers, and discrete algorithms. Prentice Hall, Englewood Cliffs (2003)zbMATHGoogle Scholar
  7. 7.
    Iftene, S.: Compartmented secret sharing based on the Chinese remainder theorem. Cryptology ePrint Archive (2005)Google Scholar
  8. 8.
    Iftene, S.: General secret sharing based on the Chinese remainder theorem. Cryptology ePrint Archive, Report 2006/166 (2006)Google Scholar
  9. 9.
    Ito, M., Saito, A., Nishizeki, T.: Secret sharing scheme realizing general access structure. In: Proceedings of IEEE, Globecom 1987, pp. 99–102 (1987)Google Scholar
  10. 10.
    Li, H.-X., Pang, L.-J., Cai, W.-D.: An efficient threshold multi-group-secret sharing scheme. Advances in Soft Computing 40, 911–918 (2007)CrossRefzbMATHGoogle Scholar
  11. 11.
    Lin, C.-C., Tsai, W.-H.: Secret image sharing with steganography and authentication. Journal of Systems and Software 73(3), 405–414 (2004)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Meher, P.K., Patra, J.C.: A new approach to secure distributed storage, sharing and dissemination of digital image. In: Proceedings of the IEEE International Symposium on Circuits and Systems, pp. 373–376 (2006)Google Scholar
  13. 13.
    Mignotte, M.: How to share a secret. In: Beth, T. (ed.) EUROCRYPT 1982. LNCS, vol. 149, pp. 371–375. Springer, Heidelberg (1983)CrossRefGoogle Scholar
  14. 14.
    Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Stallings, W.: Cryptography and Network Security Principles and Practices, 4th edn. Prentice Hall, Englewood Cliffs (2005)Google Scholar
  16. 16.
    Tan, K.J., Zhu, H.W.: General secret sharing scheme. Computer Communications 22, 755–757 (1999)CrossRefGoogle Scholar
  17. 17.
    Thien, C.-C., Lin, J.-C.: Secret image sharing. Computers and Graphics 26, 765–770 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Shyong Jian Shyu
    • 1
  • Chun-Chieh Chuang
    • 2
  • Ying-Ru Chen
    • 1
  • Ah-Fur Lai
    • 2
  1. 1.Department of Computer Science and Information EngineeringMing Chuan UniversityTaoyuanTaiwan
  2. 2.Department of Computer ScienceTaipei Municipal University of EducationTaipeiTaiwan

Personalised recommendations