Rotation and Scale Invariant Texture Analysis with Tunable Gabor Filter Banks

  • Xinqi Chu
  • Kap Luk Chan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)

Abstract

In this paper, we propose a method that can be used for image texture recognition in the presence of concurrent rotation and scale changes with tunable directional bandpass Gabor filter banks. The method relies on the analysis of the frequency spectra of the image textures, and from which the rotation and scale changes are estimated using a new spectral shift measure. Tunable Gabor filter banks are designed based on the spectral shift measure. Spectral features obtained from applying the tuned Gabor filter bank are used in a novel search strategy to achieve texture recognition. The proposed method is compared with a non-tunable Gabor filter bank and the improvement in recognition performance is demonstrated through the experimental results on 112 Brodatz textures.

Keywords

Image Texture Gabor Filter Scale Change Gabor Feature Texture Recognition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Brodatz, P.: Textures: A Photographic Album For Artists and Designers. Dover (1966)Google Scholar
  2. 2.
    Larsen, A., Bundesen, C.: Visual tranformation of size. Journal of Experimental Psychology: Human Perception and Performance 1, 214–220Google Scholar
  3. 3.
    Shepard, R.N., Cooper, L.A.: Mental Images & Their Transformation. MIT Press, Cambridge (1982)Google Scholar
  4. 4.
    Bundesen, L.A.C., Farrell, J.E.: Mental transformations of size and orientation. In: Attention and Performance IX, pp. 279–294. Lawrence Erlbaum, HillsdaleGoogle Scholar
  5. 5.
    Fountain, S.R., Tan, T.N.: Extraction of noise robust rotation invariant texture features via multichannel filtering. In: Proc. International Conference on Image Processing, October 26–29, vol. 3, pp. 197–200 (1997)Google Scholar
  6. 6.
    Hayley, G.M., Manjunath, B.M.: Rotation invariant texture classification using modified gabor filters. In: Proc. of IEEE ICIP 1995, pp. 262–265 (1994)Google Scholar
  7. 7.
    Ma Ju Han, K.-K.: Rotation-invariant and scale-invariant gabor features for texture image retrieval. Image and Vision Computing 25(9), 1474–1481 (2007)CrossRefGoogle Scholar
  8. 8.
    Kashyap, R., Khotanzad, A.: A model based method for rotation invariant texture classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 8(4), 786–804 (1986)Google Scholar
  9. 9.
    Leung, M.M., Peterson, A.M.: Scale and rotation invariant texture classification. In: Conference Record of The Twenty-Sixth Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 461–465 (1992)Google Scholar
  10. 10.
    Liu, F.: Modeling Spatial and Temporal Textures. PhD thesis, Massachusetts Institute of Technology (September 1997)Google Scholar
  11. 11.
    Madiraju, S.V.R., Liu, C.-C.: Rotation invariant texture classification using covariance. In: Proc. ICIP 1994. IEEE International Conference Image Processing, vol. 2, pp. 655–659 (1994)Google Scholar
  12. 12.
    Mahersia, H., Hamrouni, K.: New rotaion invariant features for texture classification. In: Proc. International Conference on Computer and Communication Engineering ICCCE 2008, pp. 687–690 (2008)Google Scholar
  13. 13.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data.  18(8), 837–842 (1996)Google Scholar
  14. 14.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns.  24(7), 971–987 (2002)Google Scholar
  15. 15.
    Shepard, R.: The role of transformation in spatial cognition. In: Spatial Cognition, Brain Bases and Development. Lawrence Erlbaum Associates, Mahwah (1988)Google Scholar
  16. 16.
    Greenspan, H., et al.: Rotation invariant texture recognition using a steerable pyramid. In: Proc. of ICPR 1994, pp. 162–167 (1994)Google Scholar
  17. 17.
    Zhang, L., Ma, J., Xu, X., Yuan, B.: Rotation invariant image classification based on mpeg-7 homogeneous texture descriptor. In: Proc. Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing SNPD 2007, vol. 3, pp. 798–803 (2007)Google Scholar
  18. 18.
    Jain, A., Mao, J.: Texture classification and segmentation using multiresolution simultaneous autoregressive models. Pattern Recognition 25(2), 173–188 (1992)CrossRefGoogle Scholar
  19. 19.
    Pun, C.-M., Lee, M.-C.: Log-polar wavelet energy signatures for rotation and scale invariant texture classification 25(5), 590–603 (2003)Google Scholar
  20. 20.
    Wu, Y., Yoshida, Y.: An efficient method for rotation and scaling invariant texture classification. In: Proc. International Conference on Acoustics, Speech, and Signal Processing ICASSP 1995, May 9–12, 1995, vol. 4, pp. 2519–2522 (1995)Google Scholar
  21. 21.
    Xu, Z., Pietikainen, M., Ojala, T.: Rotation-invariant texture classification using feature distributions. Pattern Recognition 33(2000), 43–52 (2000)Google Scholar
  22. 22.
    Ivry, R., Beck, J., Sutter, A.: Spatial frequency channels and perceptual grouping in texture segmentation. Computer Vision, Graphics, Image Processing 37, 299–325 (1987)CrossRefGoogle Scholar
  23. 23.
    Jones, J.P., Palmer, L.A.: An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. The Journal of Neuroscience 58(6) (1987)Google Scholar
  24. 24.
    Francos, J.M., Meiri, A.Z., Porat, B.: A Wold-Like Decomposition of Two-Dimensional Discrete Homogenous Random Fields. The Annals of Applied Probability 5(1) (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Xinqi Chu
    • 1
  • Kap Luk Chan
    • 1
  1. 1.School of Electrical and Electronics EngineeringNanyang Technological UniversitySingapore

Personalised recommendations