Cooperative Surveillance System with Fixed Camera Object Localization and Mobile Robot Target Tracking

  • Chih-Chun Chia
  • Wei-Kai Chan
  • Shao-Yi Chien
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


This paper presents a cooperative surveillance system. It presents a cooperation scheme between fixed cameras and a mobile robot. The fixed cameras detect the objects with background subtraction and locate the objects on a map with homography transform. At the same time, the information of the target to track, including the position and the appearance, is transmitted to the mobile robot. After Breadth First Search in a map of boolean array, the mobile robot finds the target in its view by use of a stochastic scheme with the information given, then the mobile robot will track the target and keep it in the robot’s view wherever he or she goes. By proposing this system, the dead spot problem in typical surveillance systems with only fixed cameras is considered and resolved.


Mobile Robot Object Segmentation Vision Localization Network Camera Bhattacharyya Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Regazzoni, C., Ramesh, V., Foresti, G.L.: Special issue on video communications, processing, and understanding for third generation surveillance systems. Proc. IEEE 89(10), 1355–1367 (2001)CrossRefGoogle Scholar
  2. 2.
    Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 246–252 (July 1999)Google Scholar
  3. 3.
    Micheloni, C., Foresti, G.L., Snidaro, L.: A Network of Cooperative Cameras for Visual-Surveillance. IEE Proc. on Visual, Image and Signal Processing, 152(2), 205–212 (2005)CrossRefGoogle Scholar
  4. 4.
    Foresti, G.L., Micheloni, C., Snidaro, L., Remagnino, P., Ellis, T.: Active Video-based Surveillance Systems: the low-level image and video processing techniques needed for implementation. IEEE Signal Processing Magazine 22(2), 25–37 (2005)CrossRefGoogle Scholar
  5. 5.
    Iwata, K., Satoh, Y., Yoda, I., Sakaue, K.: Hybrid Camera Surveillance System by Using Stereo Omni-directional System and Robust Human Detection. In: Chang, L.-W., Lie, W.-N. (eds.) PSIVT 2006. LNCS, vol. 4319, pp. 611–620. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Maggio, E., Smerladi, F., Cavallaro, A.: Adaptive Multifeature Tracking in a Particle Filtering Framework. IEEE Trans. Circuits Syst. Video Technol. 17(10), 1348–1359 (2007)CrossRefGoogle Scholar
  7. 7.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Machine Intell. 25(5), 564–577 (2003)CrossRefGoogle Scholar
  8. 8.
    Chien, S.-Y., Ma, S.-Y., Chen, L.-G.: Efficient Moving Object Segmentation Algorithm Using Background Registration Technique. IEEE Trans. Circuits Syst. Video Technol. 12(7) (July 2002)Google Scholar
  9. 9.
    Chan, W.-K., Chien, S.-Y.: Real-time memory-efficient video object segmentation in dynamic background with multi-background registration technique. In: Proc. IEEE Multimedia Signal Processing Workshop (October 2007)Google Scholar
  10. 10.
    Bradshaw, K.J., Reid, I.D., Murray, D.W.: The active recovery of 3D motion trajectories and their use in prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(3), 219–234 (1997)CrossRefGoogle Scholar
  11. 11.
    Lorincz, K., Welsh, M.: MoteTrack: A Robust, Decentralized Approach to RF-Based Location Tracking. In: Strang, T., Linnhoff-Popien, C. (eds.) LoCA 2005. LNCS, vol. 3479, pp. 63–82. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Haralick, R.M., Shapiro, L.G.: Computer and Robot Vision. Addison Wesley, Reading (1992)Google Scholar
  13. 13.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw Hill/The MIT Press (2001)Google Scholar
  14. 14.
    Ristic, B., Arulampalam, S., Gordon, N.: Beyond the Kalman Filter: Particle Filters for Tracking Applications. Artech House (Copyright 2004)Google Scholar
  15. 15.
    Nummiaro, K., Koller-Meier, E., Gool, L.V.: An Adaptive Color-Based Particle Filter. Image and Vision Computing 21(1, 10), 99–110 (2003)CrossRefzbMATHGoogle Scholar
  16. 16.
    Chang, C., Ansari, R.: Kernel Particle Filter for Visual Tracking. IEEE Signal Processing Letters 12(3) (March 2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Chih-Chun Chia
    • 1
  • Wei-Kai Chan
    • 1
  • Shao-Yi Chien
    • 1
  1. 1.Media IC and System Lab Graduate Institute of Electronics Engineering and Department of Electrical EngineeringNational Taiwan UniversityTaipeiTaiwan

Personalised recommendations