Towards an Interpretation of Intestinal Motility Using Capsule Endoscopy Image Sequences

  • Hai Vu
  • Tomio Echigo
  • Ryusuke Sagawa
  • Keiko Yagi
  • Masatsugu Shiba
  • Kazuhide Higuchi
  • Tetsuo Arakawa
  • Yasushi Yagi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


Human intestinal motility is presented by the propagation of peristaltic waves with their frequencies gradually decreasing along the length of the small bowel. This paper describes a heuristic method, which can be used towards interpreting intestinal motility through recognizing their frequency characteristics from capsule endoscopy image sequences. First, image features that reflect peristaltic activities are extracted to build a functional signal. Then, a Multi-Resolution Analysis technique in the wavelet domain is used to decompose the functional signal taking into account the non-stationary nature of intestinal motility. For peristaltic waveform recognition, the method relies on the principle of peak detections from the decomposed signals. Each waveform is detected when it exceeds a baseline level. The frequency characteristics are interpreted through analysis of the waveform appearance and their velocity propagation. Three healthy sequences were tested in experiments. The estimated trends of the peristaltic wave propagation from the experimental results show a frequency gradient, which follows the well-recognized characteristics of intestinal motility propagation. Therefore, this study is the first demonstration of a detailed interpretation of intestinal motility, and we suggest that further research focuses on intestinal motility dysfunctions.


Small Bowel Slow Wave Capsule Endoscopy Intestinal Motility Peristaltic Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Grundy, D.: GastroIntestinal Motility - The Integration of Physiological Mechanisms. MTP Press Limited, Lancaster (1985)CrossRefGoogle Scholar
  2. 2.
    Bronzino, J.D.: The Biomedical Engineering Handbook, 3rd edn. CRC Press, Boca Raton (2006)Google Scholar
  3. 3.
    Dunn, R.B., Linkens, D.A.: A mathematical model of the slow-wave electrical activity of the human small intestine. Medical and Biological Engineering 12, 750–758 (1974)CrossRefGoogle Scholar
  4. 4.
    Hansen, M.B.: Small intestinal manometry. Physiological Research 51, 541–556 (2002)Google Scholar
  5. 5.
    Iddan, G., Meron, G., Glukovsky, A., Swain, P.: Wireless capsule endoscope. Nature 405, 417 (2000)CrossRefGoogle Scholar
  6. 6.
    Adler, D.G., Gostout, C.J.: Wireless capsule endoscopy - state of art. Hospital Physician, 14–22 (2003)Google Scholar
  7. 7.
    Swain, P., Fritscher-Ravens, A.: Role of video endoscopy in managing small bowel disease. GUT 53, 1866–1875 (2004)CrossRefGoogle Scholar
  8. 8.
    Spyridonos, P., Vilarino, F., Vitria, J., Azpiroz, F., Radeva, P.: Identification of intestinal motility events of capsule endoscopy video analysis. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 531–537. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Spyridonos, P., Vilarino, F., Vitria, J., Azpiroz, F., Radeva, P.: Anisotropic feature extraction from endoluminal images for detection of intestinal contractions. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4191, pp. 161–168. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Vilarino, F., Spyridonos, P., Vitria, J., Azpiroz, F., Radeva, P.: Linear radial patterns characterization for automatic detection of tonic intestinal contractions. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 178–187. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Vu, H., Echigo, T., Sagawa, R., Yagi, K., Shiba, M., Higuchi, K., Arakawa, T., Yagi, Y.: Contraction detection in small bowel from an image sequence of wireless capsule endoscopy. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 775–783. Springer, Heidelberg (2007)Google Scholar
  12. 12.
    Vu, H., Echigo, T., Sagawa, R., Yagi, K., Shiba, M., Higuchi, K., Arakawa, T., Yagi, Y.: Adaptive control of video display for diagnostic assistance by analysis of capsule endoscopic images. In: Proc. of the 18th ICPR, pp. 980–983 (2006)Google Scholar
  13. 13.
    American Society for Gastrointestinal Endoscopy - ASGE: Technology status evaluation report wireless capsule endoscopy. Gastrointestinal Endoscopy 56, 1866–1875 (2002)Google Scholar
  14. 14.
    Swain, M., Ballard, D.: Color indexing. International Journal of Computer Vision 7, 11–32 (1991)CrossRefGoogle Scholar
  15. 15.
    Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. of the Intl. Joint Conf. on Artificial Intelligence, pp. 674–679 (1981)Google Scholar
  16. 16.
    Tomasi, C., Kanade, T.: Detection and tracking of point features. Technical report (1991)Google Scholar
  17. 17.
    Birchfield, S.: KLT: Kanade-Lucas-Tomasi Feature Tracker (2006),
  18. 18.
    Canny, J.: A computational approach to edge detection. IEEE T-PAMI 8, 679–698 (1986)CrossRefGoogle Scholar
  19. 19.
    Percival, B.D., Walden, T.A.: Wavelet Methods for Time Series Analysis. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  20. 20.
    Schemann, M., Ehrlein, H.-J.: Computerised method for pattern recognition of intestinal motility: functional significance of the spread of contractions. Medical and Biological Engineering 23, 143–149 (1985)CrossRefGoogle Scholar
  21. 21.
    De Ridder, W.J.E., Voeten, J.J., Rombouts, J.A.C.A., Van Nueten, J.M., Schuurkes, J.A.J.: Computer-assisted method for analysis of postprandial gastrointestinal motility in conscious dogs. Medical and Biological Engineering 27, 470–476 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hai Vu
    • 1
  • Tomio Echigo
    • 2
  • Ryusuke Sagawa
    • 1
  • Keiko Yagi
    • 3
  • Masatsugu Shiba
    • 4
  • Kazuhide Higuchi
    • 4
  • Tetsuo Arakawa
    • 4
  • Yasushi Yagi
    • 1
  1. 1.The Institute of Scientific and Industrial ResearchOsaka UniversityJapan
  2. 2.Osaka Electro-Communication UniversityJapan
  3. 3.Kobe Pharmaceutical UniversityJapan
  4. 4.Graduate School of MedicineOsaka City UniversityJapan

Personalised recommendations