Automatic Segmentation of Non-rigid Objects in Image Sequences Using Spatiotemporal Information

  • Cheolkon Jung
  • Joongkyu Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


This paper provides an automatic segmentation method of non-rigid objects in image sequences. The non-rigid objects have fuzzy, blurred, and indefinite boundaries such as smoke and clouds, and are random and unpredictable in spatial and temporal domains. To segment the non-rigid objects, a new segmentation approach considering random and unpredictable characteristics of the non-rigid objects is needed. In this paper, we propose a new segmentation method of the non-rigid objects in image sequences using spatiotemporal information. The procedure toward complete segmentation consists of three steps: spatial segmentation, temporal segmentation, and fusion of the spatial and temporal segmentation results. By means of experiments on various test sequences, we demonstrate that the performance of our method is quite impressive from the viewpoints of the segmentation accuracy.


Segmentation Result Markov Random Field Automatic Segmentation Table Tennis Temporal Segmentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Spagnolo, P., Orazio, T.D., Leo, M., Distante, A.: Moving object segmentation by background substraction and temporal analysis. Image and Vision Computing 24, 411–423 (2006)CrossRefGoogle Scholar
  2. 2.
    Kuo, M., Hsieh, C.H., Huang, Y.R.: Automatic extraction of moving objects for head-shoulder video sequences. Journal of Visual Communication and Image Representation 16, 68–92 (2005)CrossRefGoogle Scholar
  3. 3.
    Dimitrova, N., Zhang, H.J., Shahraray, B., Sezan, I., Zakhor, A., Huang, T.: Applications of video content analysis and retrieval. IEEE Multimedia 9, 43–55 (2002)CrossRefGoogle Scholar
  4. 4.
    Fan, J., Yu, J., Fujita, G., Onoye, T., Wu, L., Shirakawa, I.: Spatiotemporal segmentation for compact video representation. Signal Processing: Image Communication 16, 553–566 (2001)Google Scholar
  5. 5.
    Kim, M.C., Jeon, J.G., Kwak, J.S., Lee, M.H., Ahn, C.: Moving object segmentation in video sequences by user interaction and automatic object tracking. Image and Vision Computing 19, 245–260 (2001)CrossRefGoogle Scholar
  6. 6.
    Aach, T., Kaup, A.: Bayesian algorithms for adaptive change detection in image sequences using Markov random fields. Signal Processing: Image Communication 7, 147–160 (1995)Google Scholar
  7. 7.
    Meier, K., Ngan, N.: Automatic segmentation of moving objects for video object plane generation. IEEE trans. Circuits and Systems for Video Technology 8(5), 525–538 (1998)CrossRefGoogle Scholar
  8. 8.
    Kim, M.C., Choi, J.G., Kim, D., Lee, H., Lee, M.H., Ahn, C., Ho, Y.S.: A VOP generation tool: automatic segmentation of moving objects in image sequences based on spatio-temporal information. IEEE Trans. Circuits and Systems for Video Technology 9 (1999)Google Scholar
  9. 9.
    Jung, C., Kim, K.S., Kim, J.K.: Automatic moving object segmentation using automatic region growing algorithm. Journal of Korea Information and Communications Society 26, 187–193 (2001)Google Scholar
  10. 10.
    Luthon, F., Caplier, A., Lievin, M.: Spatiotemporal MRF approach to video segmentation: Application to motion detection and lip segmentation. Signal Processing 76, 61–80 (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Grinias, I., Tziritas, G.: A semi-automatic seeded region growing algorithm for video object localization and tracking. Signal Processing: Image Communication 16, 977–986 (2001)Google Scholar
  12. 12.
    Tekalp, A.M.: Digital video processing. Prentice Hall, Englewood Cliffs (1995)Google Scholar
  13. 13.
    Ray, S., Turi, R.H.: Determination of number clusters in K-means clustering and application in colour image segmentation. In: Proc. of ICAPRDT 1999, pp. 137–143 (1999)Google Scholar
  14. 14.
    Gonzalez, R.C., Woods, R.E.: Digital image processing, pp. 443–458. Addison Wesley, Reading (1992)Google Scholar
  15. 15.
    Zimanyi, M.: Reconstruction of tomographic data by Markov random fields. In: Proc. of Central European Seminar on Computer Graphics (1998)Google Scholar
  16. 16.
    Dubes, R.C., Jain, A.K., Nadabar, S.G., Chen, C.C.: MRF model-based algorithms for image segmentation. In: Proc. of ICPR (10 th International Conference on Pattern Recognition), vol. 1, pp. 808–814 (1990)Google Scholar
  17. 17.
    Wei, J., Li, Z.: An efficient two-pass MAP-MRF algorithm for motion estimation based on mean field theory. IEEE Trans. on Circuits and Systems for Video Technology 9, 960–972 (1999)CrossRefGoogle Scholar
  18. 18.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  19. 19.
    Barkat, M.: Signal detection & estimation, pp. 115–174. Artech House (1991)Google Scholar
  20. 20.
    Sklar, B.: Digital commnication, pp. 132–138. Prentice Hall, Englewood Cliffs (1988)Google Scholar
  21. 21.
    Jain, R., Kasturi, R., Schunck, B.G.: Machine vision, pp. 25–72. McGraw-Hill, New York (1995)Google Scholar
  22. 22.
    Jung, C., Kim, J.K.: Motion segmentation using Markov random field model for accurate moving object segmentation. In: Proc. of ACM ICUIMC 2008, pp. 414–418 (2008)Google Scholar
  23. 23.
    Zitnick, L., Jojic, N., Kang, S.B.: Consistent segmentation for optical flow estimation. In: Proc. ICCV 2005, pp. 1308–1315 (2005)Google Scholar
  24. 24.
    Chen, J., Tang, C.K.: Spatio-temporal markov random field for video denosing. In: Proc. of IEEE CVPR 2007, pp. 1–8 (2007)Google Scholar
  25. 25.
    Jung, C., Kim, J.K.: Non-rigid object segmentation in video sequences using Markov random field. In: Proc. of ICSP 2002 (6th International Conference on Signal Processing), vol. 1, pp. 624–627 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Cheolkon Jung
    • 1
  • Joongkyu Kim
    • 1
  1. 1.School of Information and Communication EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations