Error-Diffused Image Security Improving Using Overall Minimal-Error Searching

  • Jing-Ming Guo
  • Yun-Fu Liu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


This study presents a high capacity data hiding method for generating high quality watermarked halftone images. The embedded watermarks can be distributed into single or multiple halftone images with the proposed Overall Minimal-Error Searching (OMES). The proposed method modifies the halftone values at same position of all host images with the trained Substitution Table (S-Table). The S-Table makes the original combination of these halftone values as another meaningful combination for embedded watermark, which is the key part in determining the image quality. Hence, an optimization procedure is proposed to achieve the optimized S-Table. As demonstrated in the experimental results, the proposed approach provides good image quality and is able to guard against some frequent happened attacks in printing applications.


Digital watermarking digital halftoning error diffusion iteration-based halftoning ordered dithering overall minimal-error searching 


  1. 1.
    Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)Google Scholar
  2. 2.
    Floyd, R.W., Steinberg, L.: An adaptive algorithm for spatial gray scale. In: Proc. SID 75 Dig.: Society for information Display, pp. 36–37 (1975)Google Scholar
  3. 3.
    Mese, M., Vaidyanathan, P.P.: Optimized halftoning using dot diffusion and methods for inverse halftoning. IEEE Trans. Image Processing 9, 691–709 (2000)CrossRefGoogle Scholar
  4. 4.
    Hel-Or, H.Z.: Watermarking and copyright labeling of printed images. J. Electron. Imaging 10(3), 794–803 (2001)CrossRefGoogle Scholar
  5. 5.
    Fu, M.S., Au, O.C.: Data hiding by smart pair toggling for halftone images. In: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, vol. 4, pp. 2318–2321 (June 2000)Google Scholar
  6. 6.
    Fu, M.S., Au, O.C.: Data hiding watermarking for halftone images. IEEE Trans. Image Processing 11, 477–484 (2002)CrossRefGoogle Scholar
  7. 7.
    Wu, C.W.: Multimedia data hiding and authentication via halftoning and coordinate projection. Eurasip J. Appl. Signal Processing 2002(2), 143–151 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Pei, S.C., Guo, J.M.: High-capacity data hiding in halftone images using minimal-error bit searching and least-mean square filter. IEEE Trans. Image Processing 15, 1665–1679 (2006)CrossRefGoogle Scholar
  9. 9.
    Mannos, J., Sakrison, D.: The effects of a visual fidelity criterion on the encoding of images. IEEE Trans. Inform. Theory 20, 526–536 (1974)CrossRefzbMATHGoogle Scholar
  10. 10.
    Wang, Z., Bovik, A.C.: A Universal Image quality Index. IEEE Signal Processing Letters 9(3), 81–84 (2002)CrossRefGoogle Scholar
  11. 11.
    Damera-Venkata, N., Kite, T.D., Geisler, W.S., Evans, B.L., Bovik, A.C.: Image Quality Assessment Based on a Degradation Model. IEEE Transactions on Image Processing 9(4), 636–650 (2000)CrossRefGoogle Scholar
  12. 12.
    Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Jing-Ming Guo
    • 1
  • Yun-Fu Liu
    • 1
  1. 1.Department of Electrical EngineeringNational Taiwan University of Science and TechnologyTaipeiTaiwan

Personalised recommendations