Novel Approaches for Exclusive and Continuous Fingerprint Classification

  • Javier A. Montoya-Zegarra
  • João P. Papa
  • Neucimar J. Leite
  • Ricardo da Silva Torres
  • Alexandre X. Falcão
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


This paper proposes novel exclusive and continuous approaches to guide the search and the retrieval in fingerprint image databases. Both approaches are useful to perform a coarse level classification of fingerprint images before fingerprint authentication tasks. Our approaches are characterized by: (1) texture image descriptors based on pairs of multi-resolution decomposition methods that encode effectively global and local fingerprint information, with similarity measures used for fingerprint matching purposes, and (2) a novel multi-class object recognition method based on the Optimum Path Forest classifier. Experiments were carried out on the standard NIST-4 dataset aiming to study the discriminative and scalability capabilities of our approaches. The high classification rates allow us demonstrate the feasibility and validity of our approaches for characterizing fingerprint images accurately.


Feature Vector Optimum Path Minimum Span Tree Query Image Image Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Pankanti, S., Prabhakar, S., Jain, A.K.: On the individuality of fingerprints. IEEE Transactions on Pattern Analysus and Machine Intelligence 24, 1010–1025 (2002)CrossRefzbMATHGoogle Scholar
  2. 2.
    Jain, A.K., Ross, A., Pankanti, S.: Biometrics: A tool for information security. IEEE Transactions on Information Forensics and Security 1, 125–143 (2006)CrossRefGoogle Scholar
  3. 3.
    Jain, A.K., Chen, Y., Demirkus, M.: Pores and ridges: High-resolution fingerprint matching using level 3 features. IEEE Transactions on PAMI 29, 15–27 (2007)CrossRefGoogle Scholar
  4. 4.
    Yager, N., Amin, A.: Fingerprint classification: a review. Pattern Anal. Appl. 7, 77–93 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Lumini, A., Maio, D., Maltoni, D.: Continuous versus exclusive classification for fingerprint retrieval. Pattern Recognition Letters 18, 1027–1034 (1997)CrossRefGoogle Scholar
  6. 6.
    Papa, J., Falcão, A., Suzuki, C., Mascarenhas, N.: A discrete approach for supervised pattern recognition. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds.) IWCIA 2008. LNCS, vol. 4958, pp. 136–147. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Jain, A.K., Prabhakar, S., Hong, L., Pankanti, S.: Filterbank-based fingerprint matching. IEEE Transactions on Image Processing 9, 846–859 (2000)CrossRefGoogle Scholar
  8. 8.
    Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 837–842 (1996)CrossRefGoogle Scholar
  9. 9.
    Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. International Journal of Computer Vision 40, 49–70 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 26, 19–29 (2004)CrossRefGoogle Scholar
  11. 11.
    Cormen, T., Leiserson, C., Rivest, R.: Introduction to Algorithms. MIT Press, Cambridge (1990)zbMATHGoogle Scholar
  12. 12.
    Cousty, J., Bertrand, G., Najman, L., Couprie, M.: Watersheds, minimum spanning forests, and the drop of water principle, École Supérieure d’Ingénieurs (2007)Google Scholar
  13. 13.
    Papa, J., Falcão, A.: A new variant of the optimum-path forest classifier. In: 4th International Symposium on Visual Computing (accepted, 2008)Google Scholar
  14. 14.
    Watson, C., Wilson, C.: Nist special database 4, fingerprint database. U.S. National Institute of Standards and Technology (1992)Google Scholar
  15. 15.
    Do, M.N., Vetterli, M.: Wavelet-based texture retrieval using generalized gaussian density and kullback-leibler distance. IEEE Transactions on Image Processing 11, 146–158 (2002)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Yao, Y., Marcialis, G.L., Pontil, M., Frasconi, P., Roli, F.: Combining flat and structured representations for fingerprint classification with recursive neural networks and support vector machines. Pattern Recognition 36, 397–406 (2003)CrossRefGoogle Scholar
  17. 17.
    Cappelli, R., Lumini, A., Maio, D., Maltoni, D.: Fingerprint classification by directional image partitioning. IEEE Trans. Pattern Anal. Mach. Intell. 21, 402–421 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Javier A. Montoya-Zegarra
    • 1
    • 2
  • João P. Papa
    • 2
  • Neucimar J. Leite
    • 2
  • Ricardo da Silva Torres
    • 2
  • Alexandre X. Falcão
    • 2
  1. 1.Computer Engineering Department, Faculty of EngineeringSan Pablo Catholic UniversityVallecitoPeru
  2. 2.Institute of ComputingState University of CampinasSão PauloBrazil

Personalised recommendations