Detecting Video Forgeries Based on Noise Characteristics

  • Michihiro Kobayashi
  • Takahiro Okabe
  • Yoichi Sato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)

Abstract

The recent development of video editing techniques enables us to create realistic synthesized videos. Therefore using video data as evidence in places such as a court of law requires a method to detect forged videos. In this paper we propose an approach to detect suspicious regions in video recorded from a static scene by using noise characteristics. The image signal contains irradiance-dependent noise where the relation between irradiance and noise depends on some parameters; they include inherent parameters of a camera such as quantum efficiency and a response function, and recording parameters such as exposure and electric gain. Forged regions from another video camera taken under different conditions can be differentiated when the noise characteristics of the regions are inconsistent with the rest of the video.

References

  1. 1.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography 24(6), 381–395 (1981)Google Scholar
  2. 2.
    Fridrich, J., Soukal, D., Lukáš, J.: Detection of copy-move forgery in digital images. In: Proc. of Digital Forensic Research Workshop (2003)Google Scholar
  3. 3.
    Healey, G.E., Kondepudy, R.: Radiometric ccd camera calibration and noise estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 16(3), 267–276 (1994)CrossRefGoogle Scholar
  4. 4.
    Johnson, M.K., Farid, H.: Exposing digital forgeries by detecting inconsistencies in lighting. In: Proc. of Workshop on Multimedia and security (2005)Google Scholar
  5. 5.
    Johnson, M.K., Farid, H.: Exposing digital forgeries through chromatic aberration. In: Proc. of International Multimedia Conference, pp. 48–55 (2006)Google Scholar
  6. 6.
    Lee, S.-J., Jung, S.-H.: A survey of watermarking techniques applied to multimedia. In: Proc. of IEEE International Symposium on Industrial Electronics, vol. 1, pp. 272–277 (2001)Google Scholar
  7. 7.
    Lin, Z., Wang, R., Tang, X., Shum, H.-Y.: Detecting doctored images using camera response normality and consistency. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 1087–1092 (2005)Google Scholar
  8. 8.
    Liu, C., Szeliski, R., Kang, S.B., Lawrence Zitnick, C., Freeman, W.T.: Automatic estimation and removal of noise from a single image. Technical Report MSR-TR-2006-180, Microsoft Research (December 2006)Google Scholar
  9. 9.
    Lukáš, J., Fridrich, J., Goljan, M.: Determining digital image origin using sensor imperfections. In: Proc. of Society of Photo-Optical lnstrumentation Engineers Conference, vol. 5685, pp. 249–260 (2005)Google Scholar
  10. 10.
    Lukáš, J., Fridrich, J., Goljan, M.: Detecting digital image forgeries using sensor pattern noise. In: Proc. of Society of Photo-Optical Instrumentation Engineers Conference, vol. 6072, pp. 362–372 (2006)Google Scholar
  11. 11.
    Matsushita, Y., Lin, S.: Radiometric calibration from noise distributions. In: Proc. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2007)Google Scholar
  12. 12.
    Motwani, M.C., Gadiya, M.C., Motwani, R.C., Harris Jr., F.C.: Survey of image denoising techniques. In: Proc. of Global Signal Processing Expo. and Conference (2004)Google Scholar
  13. 13.
    Tsin, Y., Ramesh, V., Kanade, T.: Statistical calibration of ccd imaging process. In: Proc. of IEEE International Conference on Computer Vision, vol. 1, pp. 480–487 (2001)Google Scholar
  14. 14.
    Van Lanh, T., Chong, K.-S., Emmanuel, S., Kankanhalli, M.S.: A survey on digital camera image forensic methods. In: Proc. of IEEE International Conference on Multimedia and Expo., pp. 16–19 (2007)Google Scholar
  15. 15.
    Wang, W., Farid, H.: Exposing digital forgeries in interlaced and deinterlaced video. IEEE Transactions on Information Forensics and Security 2(3), 438–449 (2007)CrossRefGoogle Scholar
  16. 16.
    Wang, W., Farid, H.: Exposing digital forgeries in video by detecting duplication. In: Proc. of Workshop on Multimedia & security in International Multimedia Conference, pp. 35–42 (2007)Google Scholar
  17. 17.
    Ye, S., Sun, Q., Chang, E.-C.: Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In: Proc. of IEEE International Conference on Multimedia and Expo., pp. 12–15 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michihiro Kobayashi
    • 1
  • Takahiro Okabe
    • 1
  • Yoichi Sato
    • 1
  1. 1.Institute of Industrial ScienceThe University of TokyoJapan

Personalised recommendations