Visual Tracking Using Particle Filters with Gaussian Process Regression

  • Hongwei Li
  • Yi Wu
  • Hanqing Lu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


Particle degeneracy is one of the main problems when particle filters are applied to visual tracking. The effective solution methods on the degeneracy phenomenon include good choice of proposal distribution and use of resampling. In this paper, we propose a novel visual-tracking algorithm using particle filters with Gaussian process regression and resampling techniques, which effectively abate the influence of particle degeneracy and improve the robustness of visual tracking. The main characteristic of the proposed algorithm is that we incorporate particle filters with Gaussian process regression which can learn highly effective proposal distributions for particle filters to track the visual objects. Experimental results in challenging sequences demonstrate the effectiveness and robustness of the proposed method.


Gaussian Processes Particle Filter Particle Degeneracy Visual Tracking 


  1. 1.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based Object Tracking. IEEE Trans. Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)CrossRefGoogle Scholar
  2. 2.
    Arulampalam, M.S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Transactions On Signal Processing 50(2) (2002)Google Scholar
  3. 3.
    Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-Based Probabilistic Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A boosted particle filter: Multitarget detection and tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Jin, Y., Mokhtarian, F.: Variational Particle Filter for Multi-Object Tracking. In: International Conference on Computer Vision (2007)Google Scholar
  6. 6.
    De Freitas: Sequential Monte Carlo methods to train neural network models. Neural Computation 12(4), 955–993 (2000)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wan, E.A., van der Merwe, R.: The Unscented Kalman Filter for Nonlinear Estimation. Adaptive Systems for Signal Processing, Communications, and Control Symposium (2000)Google Scholar
  8. 8.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)zbMATHGoogle Scholar
  9. 9.
    Rasmussen, C.E.: Advances in Gaussian Processes. Advances in Neural Information Processing Systems (2006)Google Scholar
  10. 10.
    Williams, C.K.I.: Prediction with Gaussian processes:from the linear regression to linear prediction and beyond. Learning and Inference in Graphical Models (1998)Google Scholar
  11. 11.
    Csato, L., Opper, M.: Sparse online Gaussian processes. Neural Computation (2002)Google Scholar
  12. 12.
    Nummiaroa, K., Koller-Meierb, E., Gool, L.V.: An Adaptive Color-Based Particle Filter. Image and Vision Computing 21, 99–110 (2003)CrossRefGoogle Scholar
  13. 13.
    Wu, Y., Wu, B., Liu, J., Lu, H.: Probabilistic Tracking on Riemannian Manifolds. In: The 19th International Conference on Pattern Recognition (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hongwei Li
    • 1
  • Yi Wu
    • 1
  • Hanqing Lu
    • 1
  1. 1.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations