Detecting Incorrect Feature Tracking by Affine Space Fitting
Conference paper
Abstract
We present a new method for detecting incorrect feature point tracking. In this paper, we detect incorrect feature point tracking by imposing the constraint that under the affine camera model feature trajectories should be in an affine space in the parameter space. Introducing a statistical model of image noise, we test detected partial trajectories are sufficiently reliable. Then we detect incorrect partial trajectories. Using real video images, we demonstrate that our proposed method can detect incorrect feature point tracking fairly well.
Download
to read the full conference paper text
References
- 1.Brandt, S.: Closed-form solutions for affine reconstruction under missing data. In: Proc. Statistical Methods in Video Processing Workshop, Copenhagen, Denmark, June 2002, pp. 109–114 (2002)Google Scholar
- 2.Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)MathSciNetCrossRefGoogle Scholar
- 3.Hartley, R., Horseman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)Google Scholar
- 4.Huynh, D.Q., Heyden, A.: Outlier detection in video sequences under affine projection. In: Proc. IEEE Conf. Comput. Vision Pattern Recog., Kauai, HI, U.S.A, December 2001, vol. 2, pp. 695–701 (2001)Google Scholar
- 5.Ichimura, N.: Stochastic filtering for motion trajectory in image sequences using a Monte Carlo filter with estimation of hyper-parameters. In: Proc. 16th Int. Conf. Pattern Recog., Quebec City, Canada, August 2002, vol. 4, pp. 68–73 (2002)Google Scholar
- 6.Ichimura, N., Ikoma, N.: Filtering and smoothing for motion trajectory of feature point using non-gaussian state space model. IEICE Trans. Inf. Syst. E84-D(6), 755–759 (2001)Google Scholar
- 7.Jacobs, D.W.: Linear fitting with missing data for structure-from-motion. Comput. Vision Image Understand. 82(1), 57–81 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 8.Kanatani, K.: Statistical Optimization for Geometric Computation: Theory and Practice. Elsevier Scence, Amsterdam (1996)MATHGoogle Scholar
- 9.Kanatani, K.: Motion segmentation by subspace separation and model selection. In: Proc. 8th Int. Conf. Comput. Vision, Vancouver, Canada, vol. 2, pp. 301–306 (2001)Google Scholar
- 10.Kanatani, K.: Motion segmentation by subspace separation: Model selection and reliability evaluation. Int. J. Image Graphics 2(2), 179–197 (2002)CrossRefGoogle Scholar
- 11.Kanatani, K.: Evaluation and selection of models for motion segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 335–349. Springer, Heidelberg (2002)CrossRefGoogle Scholar
- 12.Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. Patt. Anal. Mach. Intell. 19(3), 206–218 (1997)CrossRefGoogle Scholar
- 13.Saito, H., Kamijima, S.: Factorization method using interpolated feature tracking via projective geometry. In: Proc. 14th British Machine Vision Conf., Norwich, UK, vol. 2, pp. 449–458 (September 2003)Google Scholar
- 14.Sugaya, Y., Kanatani, K.: Automatic camera model selection for multibody motion segmentation. In: Proceedings of the IAPR Workshop on Machine Vision Applications (MVA 2002), Nara, Japan, 11-13 December, pp. 412–415 (2002)Google Scholar
- 15.Sugaya, Y., Kanatani, K.: Outlier removal for motion tracking by subspace separation. IEICE Trans. Inf. & Syst. E86-D(6), 1095–1102 (2003)Google Scholar
- 16.Sugaya, Y., Kanatani, K.: Extending interrupted feature point tracking for 3-D affine reconstruction. IEICE Transactions on Information and Systems E87-D(4), 1031–1038 (2004)MATHGoogle Scholar
- 17.Sugaya, Y., Kanatani, K.: Multi-stage optimization for multi-body motion segmentation. IEICE Transactions on Information and Systems E87-D(7), 1935–1942 (2004)Google Scholar
- 18.Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography—A factorization method. Int. J. Comput. Vision 9(2), 137–154 (1992)CrossRefGoogle Scholar
- 19.Tomasi, C., Kanade, T.: Detection and Tracking of Point Features, CMU Tech. Rep. CMU-CS-91-132 (April 1991), http://www.ces.clemson.edu/~stb/klt/
Copyright information
© Springer-Verlag Berlin Heidelberg 2009