Live Video Segmentation in Dynamic Backgrounds Using Thermal Vision

  • Viet-Quoc Pham
  • Keita Takahashi
  • Takeshi Naemura
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5414)


In this paper we describe a new technique for live video segmentation of human regions from dynamic backgrounds. Correct segmentations are produced in real-time even in severe background changes caused by camera movement and illumination changes. There are three key contributions. The first contribution is the employing of the thermal cue which proves to be very effective when fused with color. Second, we propose a new speed-up GraphCut algorithm by combining with the Bayesian estimation. The third contribution is a novel online learning method using accumulative histograms. The segmentation accuracy and speed are quite capable of the live video segmentation purpose.


Live video segmentation infrared image sensors GraphCut 


  1. 1.
    Criminisi, A., Cross, G., Blake, A., Kolmogorov, V.: Bilayer segmentation of live video. In: Computer Vision and Pattern Recognition, vol. 1, pp. 53–60 (2006)Google Scholar
  2. 2.
    Sun, J., Zhang, W., Tang, X., Shum, H.-Y.: Background cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Yasuda, K., Naemura, T., Harashima, H.: Thermo-key: human region segmentation from video. Computer Graphics and Applications, 26–30 (January-February 2004)Google Scholar
  4. 4.
    Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region segmentation of objects in N-D images. In: IEEE International Conference on Computer Vision, vol. 1, pp. 105–112 (2001)Google Scholar
  5. 5.
    Rother, C., Kolmogorov, V., Blake, A.: Grabcut: interactive foreground extraction using iterated graph cuts. In: SIGGRAPH, vol. 23, pp. 309–314 (2004)Google Scholar
  6. 6.
    Incorp., A.S.: Adobe photoshop user guide (2002)Google Scholar
  7. 7.
    Mortensen, E., Barrett, W.: Intelligent scissors for image composition. In: Computer graphics and interactive techniques, pp. 191–198 (1995)Google Scholar
  8. 8.
    Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video. In: Computer Vision and Pattern Recognition, pp. 407–414 (2005)Google Scholar
  9. 9.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1124–1137 (2004)Google Scholar
  10. 10.
    Implementation of Bilayer Segmentation of Live Video,

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Viet-Quoc Pham
    • 1
  • Keita Takahashi
    • 2
  • Takeshi Naemura
    • 1
  1. 1.Graduate School of Information Science and TechnologyThe University of TokyoJapan
  2. 2.IRT Research InitiativeThe University of TokyoTokyoJapan

Personalised recommendations