Robust 3D Face Tracking on Unknown Users with Dynamical Active Models

  • Dianle Zhou
  • Patrick Horain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5371)


The Active Appearance Models [1] and the derived Active Models (AM) [4] allow to robustly track the face of a single user that was previously learnt, but works poorly with multiple or unknown users. Our research aims at improving the tracking robustness by learning from video databases. In this paper, we study the relation between the face texture and the parameter gradient matrix, and propose a statistical approach to dynamically fit the AM to unknown users by estimating the gradient and update matrices from the face texture. We have implemented this algorithm for real time face tracking and experimentally demonstrate its robustness when tracking multiple or unknown users’ faces.


Face Tracking Active Appearance Models Face Animation Virtual Reality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cootes, T., Edwards, G., Taylor, C.: Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 681–685 (2001)CrossRefGoogle Scholar
  2. 2.
    Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2d+3d active appearance models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 25, pp. 35–542 (2004)Google Scholar
  3. 3.
    Wiskott, L., Fellous, J.M., Kruger, N., Malsburg, C.: Face recognition by elastic bunch graph matching, Tech. Rep. IR-INI 96–08 (1996)Google Scholar
  4. 4.
    Dornaika, F., Ahlberg, J.: Fast and Reliable Active Appearance Model Search for 3D Face Tracking. IEEE Transactions on Systems, Man, and Cybernetics–Part 34, 1838–1853 (2004)CrossRefGoogle Scholar
  5. 5.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  6. 6.
    Ahlberg, J.: Candide-3 – an updated parameterized face. Technical Report LiTH-ISY-R-2326, Linkoping University, Sweden (2001)Google Scholar
  7. 7.
    Hou, X.W., Li, S.Z., Zhang, H.J.: Direct appearance models. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 828–833 (2002)Google Scholar
  8. 8.
    Ahlberg, J.: Real-Time Facial Feature Tracking Using an Active Model With Fast Image Warping. In: International Workshop on Very Low Bitrates Video, pp. 39–43 (2001)Google Scholar
  9. 9.
    Gross, R., Matthews, I., Baker, S.: Generic vs. person specific active appearance models. Image and Vision Computing 23(11), 1080–1093 (2005)CrossRefGoogle Scholar
  10. 10.
    Ahlberg, J.: Model-based Coding - Extraction, Coding, and Evaluation of Face Model Parameters, PhD Thesis (2002)Google Scholar
  11. 11.
    Yang, M.H., Kriegman, D., Ahuja, N.: Detecting Faces in Images: A Survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 34–58 (2002)CrossRefGoogle Scholar
  12. 12.
    Matthews, I., Baker, S.: Active appearance models revisited. International Journal of Computer Vision 60(2), 135–164 (2004)CrossRefGoogle Scholar
  13. 13.
    Viola, P., Jones, M.J.: Robust real-time object detection. Cambridge Research Laboratory, Technical Report Series (2001)Google Scholar
  14. 14.
    Bradski, G., Kaehler, A.: Pisarevsky: Learningbased computer vision with intel’s open source computer vision library. Intel Technology Journal 9(2), 1 (2005)Google Scholar
  15. 15.
    Poggi, I., Pelachaud, C., Derosis, F., Carofiglio, V., Decarolis, B.: GRETA. A Believable Embodied Conversational Agent. In: Stock, O., Zancarano, M. (eds.) Multimodal Intelligent Information Presentation. Kluwer, Dordrecht (2005)Google Scholar
  16. 16.
    Gourier, N., Hall, D., Crowley, J.L.: Estimating Face Orientation from Robust Detection of Salient Facial Features. In: International Workshop on Visual Observation of Deictic Gestures (2004)Google Scholar
  17. 17.
    Salicetti, S., Beumier, C., Chollet, G., Dorizzi, B., Jardins, J.L.l., Lunter, J., Ni, Y., Petrowska Delacretaz, D.: BIOMET: A multimodal person authentication database including face, voice, fingerprint, hand and signature modalities. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 845–853. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  18. 18.
    Gross, R., Baker, S., Matthews, I., Kanade, T.: Face Recognition Across Pose and Illumination. In: Li, S.Z., Jain, A.K. (eds.) Handbook of Face Recognition, Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dianle Zhou
    • 1
  • Patrick Horain
    • 1
  1. 1.Telecom & Management SudParisInstitut TelecomÉvry CedexFrance

Personalised recommendations