Personalized News Video Recommendation

  • Hangzai Luo
  • Jianping Fan
  • Daniel A. Keim
  • Shin’ichi Satoh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5371)


In this paper, a novel framework is developed to support personalized news video recommendation. First, multi-modal information sources for news videos are seamlessly integrated and synchronized to achieve more reliable news topic detection, and the contexts between different news topics are extracted automatically. Second, topic network and hyperbolic visualization are seamlessly integrated to support interactive navigation and exploration of large-scale collections of news videos at the topic level, so that users can gain deep insights of large-scale collections of news videos at the first glance. In such interactive topic network navigation and exploration process, users’ personal background knowledge can be exploited for selecting news topics of interest interactively, building up their mental models of news needs precisely and formulating their queries easily by selecting the visible news topics on the topic network directly. Our system can further recommend the relevant web news, the new search directions, and the most relevant news videos according to their importance and representativeness scores. Our experiments on large-scale collections of news videos have provided very positive results.


Topic network personalized news video recommendation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marchionini, G.: Information seeking in electronic environments. Cambridge University Press, Cambridge (1997)Google Scholar
  2. 2.
    Yang, B., Mei, T., Hua, X.-S., Yang, L., Yang, S.-Q., Li, M.: Online video recommendation based on multimodal fusion and relevance feedback. In: ACM CIVR 2007, pp. 73–80 (2007)Google Scholar
  3. 3.
    Wise, J.A., Thomas, J., Pennock, K., Lantrip, D., Pottier, M., Schur, A., Crow, V.: Visualizing the non-visual: Spatial analysis and interaction with information from text documents. In: IEEE InfoVis 1995, pp. 51–58 (1995)Google Scholar
  4. 4.
    Swan, R.C., Allan, J.: TimeMine: visualizing automatically constructed timelines. In: ACM SIGIR (2000)Google Scholar
  5. 5.
    Weskamp, M.: “Newsmap”,
  6. 6.
    Havre, S., Hetzler, B., Whitney, P., Nowell, L.: ThemeRiver: Visualizing thematic changes in large document collections. IEEE Trans. on Visualization and Computer Graphics 8(1), 9–20 (2002)CrossRefGoogle Scholar
  7. 7.
    Luo, H., Fan, J., Yang, J., Ribarsky, W., Satoh, S.: Large-scale new video classification and hyperbolic visualization. In: IEEE VAST 2007, pp. 107–114 (2007)Google Scholar
  8. 8.
    Luo, H., Fan, J., Yang, J., Ribarsky, W., Satoh, S.: Exploring large-scale video news via interactive visualization. In: IEEE VAST 2006, pp. 75–82 (2006)Google Scholar
  9. 9.
    Lai, W., Hua, X.-S., Ma, W.-Y.: Towards content-based relevance ranking for video search. In: ACM Multimedia, pp. 627–630 (2006)Google Scholar
  10. 10.
    Teevan, J., Dumais, S., Horvitz, E.: Personalized search via automated analysis of interests and activities. In: ACM SIGIR (2005)Google Scholar
  11. 11.
    Wactlar, H., Hauptmann, A., Gong, Y., Christel, M.: Lessons learned from the creation and deployment of a terabyte digital video library. IEEE Computer 32(2), 66–73 (1999)CrossRefGoogle Scholar
  12. 12.
    Christel, M.G., Yang, R.: Merging stryboard strategies and automatic retrieval for improving interactive video search. In: ACM CIVR 2007(2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hangzai Luo
    • 1
  • Jianping Fan
    • 1
  • Daniel A. Keim
    • 2
  • Shin’ichi Satoh
    • 3
  1. 1.CS DepartmentUNC-CharlotteUSA
  2. 2.University of KonstanzGermany
  3. 3.NIITokyoJapan

Personalised recommendations