Advertisement

A Multimodal Constellation Model for Object Category Recognition

  • Yasunori Kamiya
  • Tomokazu Takahashi
  • Ichiro Ide
  • Hiroshi Murase
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5371)

Abstract

Object category recognition in various appearances is one of the most challenging task in the object recognition research fields. The major approach to solve the task is using the Bag of Features (BoF). The constellation model is another approach that has the following advantages: (a) Adding and changing the candidate categories is easy; (b) Its description accuracy is higher than BoF; (c) Position and scale information, which are ignored by BoF, can be used effectively. On the other hand, this model has two weak points: (1) It is essentially an unimodal model that is unsuitable for categories with many types of appearances. (2) The probability function that represents the constellation model takes a long time to calculate. In this paper we propose a “Multimodal Constellation Model” to solve the two weak points of the constellation model. Experimental results showed the effectivity of the proposed model by comparison to methods using BoF.

Keywords

Constellation model Multimodalization Speed-up Object category recognition EM algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  2. 2.
    Bosch, A., Zisserman, A., Muñoz, X.: Scene classification via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Proc. ECCV International Workshop on Statistical Learning in Computer Vision, pp. 1–22 (2004)Google Scholar
  4. 4.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Royal Statistical Society, Series B 39(1), 1–38 (1977)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Everingham, M., Zisserman, A., Williams, C.K.I., Van Gool, L.: The PASCAL Visual Object Classes Challenge 2006 Results (VOC 2006) (2006), http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf
  6. 6.
    Fei-Fei, L., Perona, A.P.: A bayesian hierarchical model for learning natural scene categories. In: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 524–531 (2005)Google Scholar
  7. 7.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 264–271 (2003)Google Scholar
  8. 8.
    Fergus, R., Perona, P., Zisserman, A.: A sparse object category model for efficient learning and exhaustive recognition. In: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 1, pp. 380–387 (2005)Google Scholar
  9. 9.
    Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets of image features. In: Proc. IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1458–1465 (2005)Google Scholar
  10. 10.
    Kadir, T., Brady, M.: Saliency, scale and image description. Int. J. of Computer Vision 45(2), 83–105 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ma, X., Grimson, W.E.L.: Edge-based rich representation for vehicle classification. In: Proc. IEEE Int. Conf. on Computer Vision, vol. 2, pp. 1185–1192 (2005)Google Scholar
  12. 12.
    Varma, M., Ray, D.: Learning the discriminative power-invariance trade-off. In: Proc. IEEE Int. Conf. on Computer Vision (2007)Google Scholar
  13. 13.
    Wang, G., Zhang, Y., Fei-Fei, L.: Using dependent regions for object categorization in a generative framework. In: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 1597–1604 (2006)Google Scholar
  14. 14.
    Weber, M., Welling, M., Perona, P.: Towards automatic discovery of object categories. In: Proc. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, vol. 2, pp. 101–108 (2000)Google Scholar
  15. 15.
    Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 18–32. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. Int. J. of Computer Vision (2), 213–238 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Yasunori Kamiya
    • 1
  • Tomokazu Takahashi
    • 2
  • Ichiro Ide
    • 1
  • Hiroshi Murase
    • 1
  1. 1.Graduate School of Information ScienceNagoya UniversityNagoyaJapan
  2. 2.Faculty of Economics and InformationGifu Shotoku Gakuen UniversityGifuJapan

Personalised recommendations