Integrating Image Segmentation and Classification for Fuzzy Knowledge-Based Multimedia Indexing

  • Thanos Athanasiadis
  • Nikolaos Simou
  • Georgios Papadopoulos
  • Rachid Benmokhtar
  • Krishna Chandramouli
  • Vassilis Tzouvaras
  • Vasileios Mezaris
  • Marios Phiniketos
  • Yannis Avrithis
  • Yiannis Kompatsiaris
  • Benoit Huet
  • Ebroul Izquierdo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5371)

Abstract

In this paper we propose a methodology for semantic indexing of images, based on techniques of image segmentation, classification and fuzzy reasoning. The proposed knowledge-assisted analysis architecture integrates algorithms applied on three overlapping levels of semantic information: i) no semantics, i.e. segmentation based on low-level features such as color and shape, ii) mid-level semantics, such as concurrent image segmentation and object detection, region-based classification and, iii) rich semantics, i.e. fuzzy reasoning for extraction of implicit knowledge. In that way, we extract semantic description of raw multimedia content and use it for indexing and retrieval purposes, backed up by a fuzzy knowledge repository. We conducted several experiments to evaluate each technique, as well as the whole methodology in overall and, results show the potential of our approach.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adamek, T., O’Connor, N., Murphy, N.: Region-based segmentation of images using syntactic visual features. In: Proc. Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS 2005, Switzerland (April 2005)Google Scholar
  2. 2.
    Athanasiadis, T., Mylonas, P., Avrithis, Y., Kollias, S.: Semantic image segmentation and object labeling. IEEE Trans. on Circuits and Systems for Video Technology 17(3), 298–312 (2007)CrossRefGoogle Scholar
  3. 3.
    Baader, F., McGuinness, D., Nardi, D., Patel-Schneider, P.F.: The Description Logic Handbook: Theory, implementation and applications. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  4. 4.
    Benmokhtar, R., Huet, B.: Neural network combining classifier based on dempster-shafer theory for semantic indexing in video content. In: International MultiMedia Modeling Conference, vol. 4351, pp. 196–205 (2007)Google Scholar
  5. 5.
    Chandramouli, K., Izquierdo, E.: Image classification using self organizing feature maps and particle swarm optimization. In: Proc. 7th International Workshop on Image Analysis for Multimedia Interactive Services, WIAMIS (2006)Google Scholar
  6. 6.
    Denoeux, T.: An evidence-theoretic neural network classifier. In: International Conference on Systems, Man and Cybernetics, vol. 3, pp. 712–717 (1995)Google Scholar
  7. 7.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  8. 8.
    Naphade, M., Huang, T.S.: A probabilistic framework for semantic video indexing, filtering and retrieval. IEEE Trans. on Multimedia 3(1), 144–151 (2001)Google Scholar
  9. 9.
    Pan, J.Z., Stamou, G., Stoilos, G., Thomas, E.: Expressive querying over fuzzy DL-Lite ontologies. In: Proceedings of the International Workshop on Description Logics (DL 2007) (2007)Google Scholar
  10. 10.
    Papadopoulos, G.T., Mezaris, V., Kompatsiaris, I., Strintzis, M.G.: Combining global and local information for knowledge-assisted image analysis and classification. EURASIP J. Adv. Signal Process 2007(2), 18 (2007)MATHGoogle Scholar
  11. 11.
    Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR 2006: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 321–330. ACM Press, New York (2006)Google Scholar
  12. 12.
    Snoek, C., Huurninkm, B., Hollink, L., de Rijke, M., Schreiber, G., Worring, M.: Adding semantics to detectors for video retrieval. IEEE Trans. on Multimedia 9(5), 144–151 (2007)CrossRefGoogle Scholar
  13. 13.
    Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Reasoning with very expressive fuzzy description logics. Journal of Artificial Intelligence Research 30(5), 273–320 (2007)MathSciNetMATHGoogle Scholar
  14. 14.
    Straccia, U.: Reasoning within fuzzy description logics. Journal of Artificial Intelligence Research 14, 137–166 (2001)MathSciNetMATHGoogle Scholar
  15. 15.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  16. 16.
    Zhang, L., Lin, F., Zhang, B.: Support vector machine learning for image retrieval. In: International Conference on Image Processing, vol. 2 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Thanos Athanasiadis
    • 1
  • Nikolaos Simou
    • 1
  • Georgios Papadopoulos
    • 2
  • Rachid Benmokhtar
    • 3
  • Krishna Chandramouli
    • 4
  • Vassilis Tzouvaras
    • 1
  • Vasileios Mezaris
    • 2
  • Marios Phiniketos
    • 1
  • Yannis Avrithis
    • 1
  • Yiannis Kompatsiaris
    • 2
  • Benoit Huet
    • 3
  • Ebroul Izquierdo
    • 4
  1. 1.Image, Video and Multimedia Systems LaboratoryNational Technical University of AthensGreece
  2. 2.Informatics and Telematics InstituteCentre for Research and Technology Hellas (CERTH)Greece
  3. 3.Département MultimédiaInstitut EurécomFrance
  4. 4.Department of Electronic EngineeringQueen Mary University of LondonUK

Personalised recommendations