Advertisement

Bit Allocation for Spatio-temporal Wavelet Coding of Animated Semi-regular Meshes

  • Aymen Kammoun
  • Frédéric Payan
  • Marc Antonini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5371)

Abstract

In this paper, we propose a compression scheme for animated semi-regular meshes. This scheme includes a spatio-temporal wavelet filtering to exploit the coherence both in time and space. In order to optimize the quantization of both spatial and temporal wavelet coefficients, the proposed compression scheme also includes a model-based bit allocation. The experimental results show that this approach significantly improves the compression performances, when comparing with previous similar approaches.

Keywords

Spatio-temporal decomposition Wavelet filtering Animation Semi-regular meshes Bit Allocation Coding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ibarria, L., Rossignac, J.: Dynapack: space-time compression of the 3D animations of triangle meshes with fixed connectivity. In: ACM Symp. Computer Animation, pp. 126–135 (2003)Google Scholar
  2. 2.
    Yang, J., Kim, C., Lee, S.U.: Compression of 3D triangle mesh sequences based on vertex-wise motion vector prediction. IEEE Transactions on Circuits and Systems for Video Technology 12(12), 1178–1184 (2002)CrossRefGoogle Scholar
  3. 3.
    Alexa, M., Muller, W.: Representing animations by principal components. Computer Graphics Forum 19, 3 (2000)CrossRefGoogle Scholar
  4. 4.
    Karni, Z., Gotsman, C.: Compression of soft-body animation sequences. Computers and Graphics 28, 25–34 (2004)CrossRefGoogle Scholar
  5. 5.
    Vasa, L., Skala, V.: Coddyac: Connectivity driven dynamic mesh compression. In: 3DTV Conference 2007 (2007)Google Scholar
  6. 6.
    Boulfani, Y., Antonini, M., Payan, F.: Motion-based mesh clustering for mcdwt compression of 3d animated meshes. In: Proceedings of EUSIPCO 2007, Poland (September 2007)Google Scholar
  7. 7.
    Mamou, K., Zaharia, T., Prêteux, F., Kamoun, A., Payan, F., Antonini, M.: Two optimizations of the mpeg-4 famc standard for enhanced compression of animated 3d meshes. In: Proceedings of IEEE International Conference in Image Processing (September 2008)Google Scholar
  8. 8.
    Lopes, A., Gamito, M.: Wavelet compression and transmission of deformable surfaces over networks. In: Proceedings of the 10th Portuguese Computer Graphics Meeting, pp. 107–114 (2001)Google Scholar
  9. 9.
    Guskov, I., Khodakovsky, A.: Wavelet compression of parametrically coherent mesh sequences. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation (August 2004)Google Scholar
  10. 10.
    Payan, F., Antonini, M.: Temporal wavelet-based geometry coder for 3d animations. Computer & Graphics 31, 77–88 (2007)Google Scholar
  11. 11.
    Cho, J., Kim, M., Valette, S., Jung, H., Prost, R.: 3d dynamic mesh compression using wavelet-based multiresolution analysis. In: IEEE International Conference on Image Processing (ICIP 2006) (October 2006)Google Scholar
  12. 12.
    Valette, S., Prost, R.: A wavelet-based progressive compression scheme for triangle meshes: Wavemesh. IEEE Transactions on Visualization and Computer Graphics 10(2) (mars/avril 2004)Google Scholar
  13. 13.
    Khodakovsky, A., Schröder, P., Sweldens, W.: Progressive geometry compression. In: Akeley, K. (ed.) Siggraph 2000, Computer Graphics Proceedings, pp. 271–278. ACM Press / ACM SIGGRAPH / Addison Wesley Longman (2000)Google Scholar
  14. 14.
    Khodakovsky, A., Guskov, I.: Normal mesh compression. In: Geometric Modeling for Scientific Visualization. Springer, Heidelberg (2002)Google Scholar
  15. 15.
    Payan, F., Antonini, M.: An efficient bit allocation for compressing normal meshes with an error-driven quantization. Computer Aided Geometric Design, Special Issue on Geometric Mesh Processing 22, 466–486 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Payan, F., Kamoun, A., Antonini, M.: Remeshing and spatio-temporal wavelet filtering for 3d animations. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, US (March-April 2008)Google Scholar
  17. 17.
    Yang, J., Kim, C., Lee, S.: Semi-regular representation and progressive compression of 3d dynamic mesh sequences. IEEE Transactions on Image Processing 15(9), 2531–2544 (2006)CrossRefGoogle Scholar
  18. 18.
    Touma, C., Gotsman, C.: Triangle mesh compression. In: Graphics Interface 1998, pp. 26–34 (1998)Google Scholar
  19. 19.
    Sweldens, W.: The lifting scheme: A custom-design construction of biorthogonal wavelets. Applied and Computational Harmonic Analysis 3(2), 186–200 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Usevitch, B.: Optimal bit allocation for biorthogonal wavelet coding. In: DCC 1996: Proceedings of the Conference on Data Compression, Washington, DC, USA, p. 387. IEEE Computer Society, Los Alamitos (1996)Google Scholar
  21. 21.
    Aspert, N., Santa-Cruz, D., Ebrahimi, T.: Mesh: Measuring errors between surfaces using the hausdorff distance. In: IEEE International Conference in Multimedia and Expo (ICME) (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Aymen Kammoun
    • 1
  • Frédéric Payan
    • 1
  • Marc Antonini
    • 1
  1. 1.Laboratoire I3S (UMR 6070 CNRS-Université de Nice - Sophia Antipolis)Sophia AntipolisFrance

Personalised recommendations