Skip to main content

Boolean Constraint Satisfaction Problems: When Does Post’s Lattice Help?

  • Chapter
Complexity of Constraints

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5250))

Satisfiability Problems

The propositional satisfiability problem SAT, i.e., the problem to decide, given a propositional formula φ (without loss of generality in conjunctive normal form CNF), if there is an assignment to the variables in φ that satisfies φ, is the historically first and standard NP-complete problem [Coo71]. However, there are well-known syntactic restrictions for which satisfiability is efficiently decidable, for example if every clause in the CNF formula has at most two literals (2CNF formulas) or if every clause has at most one positive literal (Horn formulas) or at most one negative literal (dual Horn formulas), see [KL99]. To study this phenomenon more generally, we study formulas with “clauses” of arbitrary shapes, i.e., consisting of applying arbitrary relations R ⊆ {0,1}k to (not necessarily distinct) variables x 1,...,x k . A constraint language Γ is a finite set of such relations. In the rest of this chapter, Γ and Γ′ will always denote Boolean constraint languages. A Γ-formula is a conjunction of clauses R(x 1,...,x k ) as above using only relations R from Γ. The for us central family of algorithmic problems, parameterized by a constraint language Γ, now is the problem to determine satisfiability of a given Γ-formula, denoted by Csp(Γ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allender, E., Bauland, M., Immerman, N., Schnoor, H., Vollmer, H.: The complexity of satisfiability problems: Refining Schaefer’s theorem. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 71–82. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Agrawal, M.: The first-order isomorphism theorem. In: Hariharan, R., Mukund, M., Vinay, V. (eds.) FSTTCS 2001. LNCS, vol. 2245, pp. 70–82. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Bauland, M., Böhler, E., Creignou, N., Reith, S., Schnoor, H., Vollmer, H.: The complexity of problems for quantified constraints. Technical Report 07-023, Electronic Colloquium on Computational Complexity (2007)

    Google Scholar 

  4. Bauland, M., Chapdelaine, P., Creignou, N., Hermann, M., Vollmer, H.: An algebraic approach to the complexity of generalized conjunctive queries. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 30–45. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part I: Post’s lattice with applications to complexity theory. ACM-SIGACT Newsletter 34(4), 38–52 (2003)

    Article  Google Scholar 

  6. Böhler, E., Creignou, N., Reith, S., Vollmer, H.: Playing with Boolean blocks, part II: Constraint satisfaction problems. ACM-SIGACT Newsletter 35(1), 22–35 (2004)

    Article  Google Scholar 

  7. Bulatov, A., Dalmau, V.: Towards a dichotomy theorem for the counting constraint satisfaction problem. In: Proceedings Foundations of Computer Science, pp. 562–572. ACM Press, New York (2003)

    Google Scholar 

  8. Blass, A., Gurevich, Y.: On the unique satisfiability problem. Information and Control 82, 80–88 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bauland, M., Hemaspaandra, E.: Isomorphic implication. In: Jedrzejowicz, J., Szepietowski, A. (eds.) MFCS 2005. LNCS, vol. 3618, pp. 119–130. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: Equivalence and isomorphism for Boolean constraint satisfaction. In: Bradfield, J.C. (ed.) CSL 2002 and EACSL 2002. LNCS, vol. 2471, pp. 412–426. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  11. Böhler, E., Hemaspaandra, E., Reith, S., Vollmer, H.: The complexity of Boolean constraint isomorphism. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 164–175. Springer, Heidelberg (2004)

    Google Scholar 

  12. Bodnarchuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for Post algebras I, II. Cybernetics 5, :243–252, 531–539 (1969)

    Article  Google Scholar 

  13. Böhler, E., Reith, S., Schnoor, H., Vollmer, H.: Bases for Boolean co-clones. Information Processing Letters 96, 59–66 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chapdelaine, P., Creignou, N.: The complexity of boolean constraint satisfaction local search problems. Annals of Mathematics and Artificial Intelligence 43(1-4), 51–63 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Creignou, N., Hermann, M.: Complexity of generalized satisfiability counting problems. Information and Computation 125, 1–12 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Creignou, N., Hébrard, J.-J.: On generating all solutions of generalized satisfiability problems. Informatique Théorique et Applications/Theoretical Informatics and Applications 31(6), 499–511 (1997)

    MathSciNet  MATH  Google Scholar 

  17. Chen, H.: A rendezvous of logic, complexity, and algebra. ACM-SIGACT Newsletter 37(4), 85–114 (2006)

    Article  Google Scholar 

  18. Chapdelaine, P., Hermann, M., Schnoor, I.: Complexity of default logic on generalized conjunctive queries. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS, vol. 4483, pp. 58–70. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Creignou, N., Khanna, S., Sudan, M.: Complexity Classifications of Boolean Constraint Satisfaction Problems. Monographs on Discrete Applied Mathematics. SIAM, Philadelphia (2001)

    Book  MATH  Google Scholar 

  20. Crescenzi, P., Kann, V., Silvestri, R., Trevisan, L.: Structure in approximation classes. SIAM Journal on Computing 28(5), 1759–1782 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  21. Creignou, N., Kolaitis, Ph., Zanuttini, B.: Structure Identification for Boolean Relations and Plain Bases for co-Clones. Journal of Computer and System Sciences 74, 1103–1115 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Cook, S.A.: The complexity of theorem proving procedures. In: Proceedings 3rd Symposium on Theory of Computing, pp. 151–158. ACM Press, New York (1971)

    Google Scholar 

  23. Creignou, N.: A dichotomy theorem for maximum generalized satisfiability problems. Journal of Computer and System Sciences 51, 511–522 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  24. Creignou, N., Zanuttini, B.: A complete classification of the complexity of propositional abduction. SIAM Journal on Computing 36(1), 207–229 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dalmau, V.: Some dichotomy theorems on constant-free quantified boolean formulas. Technical Report LSI-97-43-R, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (1997)

    Google Scholar 

  26. Dalmau, V.: Computational complexity of problems over generalized formulas. Ph.D thesis, Department de Llenguatges i Sistemes Informàtica, Universitat Politécnica de Catalunya (2000)

    Google Scholar 

  27. Durand, A., Hermann, M., Kolaitis, P.G.: Subtractive reductions and complete problems for counting complexity classes. Theoretical Computer Science 340(3), 496–513 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Egri, L., Larose, B., Tesson, P.: Symmetric datalog and constraint satisfaction problems in logspace. In: 22nd IEEE Symposium on Logic in Computer Science, pp. 193–202. IEEE Computer Society, Los Alamitos (2007)

    Google Scholar 

  29. Flum, J., Grohe, M.: Parameterized complexity theory. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  30. Geiger, D.: Closed systems of functions and predicates. Pac. J. Math. 27(2), 228–250 (1968)

    MathSciNet  MATH  Google Scholar 

  31. Gopalan, P., Kolaitis, P.G., Maneva, E.N., Papadimitriou, C.H.: The connectivity of boolean satisfiability: Computational and structural dichotomies. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 346–357. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Hemaspaandra, E.: Dichotomy theorems for alternation-bounded quantified boolean formulas. CoRR, cs.CC/0406006 (2004)

    Google Scholar 

  33. Hemaspaandra, L., Vollmer, H.: The satanic notations: counting classes beyond #P and other definitional adventures. Complexity Theory Column 8, ACM-SIGACT News 26(1), 2–13 (1995)

    Google Scholar 

  34. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1999)

    Book  MATH  Google Scholar 

  35. Jeavons, P.G., Cohen, D.A., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44(4), 527–548 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jonsson, P., Krokhin, A.: Recognizing frozen variables in constraint satisfaction problems. Theoretical Computer Science 329(1-3), 93–113 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: On generating all maximal independent sets. Information Processessing Letters 27(3), 119–123 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  38. Juban, L.: Dichotomy theorem for generalized unique satisfiability problem. In: Ciobanu, G., Păun, G. (eds.) FCT 1999. LNCS, vol. 1684, pp. 327–337. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  39. Kirousis, L.M., Kolaitis, P.G.: The complexity of minimal satisfiability problems. Information and Computation 187(1), 20–39 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  40. Kirousis, L.M., Kolaitis, P.G.: A dichotomy in the complexity of propositional circumscription. Theory of Computing Systems 37, 695–715 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  41. Kleine Büning, H., Lettmann, T.: Propositional Logic: Deduction and Algorithms. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  42. Kleinberg, J., Papadimitriou, C., Raghavan, P.: Auditing Boolean attributes. Journal of Computer and System Sciences 66(1), 244–253 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  43. Krentel, M.W.: The complexity of optimization functions. Journal of Computer and System Sciences 36, 490–509 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  44. Krentel, M.W.: Generalizations of OptP to the polynomial hierarchy. Theoretical Computer Science 97, 183–198 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  45. Khanna, S., Sudan, M.: The optimization complexity of constraint satisfaction problems. Technical Report STAN-CS-TN-96-29, Stanford University (1996)

    Google Scholar 

  46. Kavvadias, D., Sideri, M.: The inverse satisfiability problem. SIAM Journal of Computing 28(1), 152–163 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  47. Köbler, J., Schöning, U., Torán, J.: The Graph Isomorphism Problem: its Structural Complexity. Progress in Theoretical Computer Science. Birkhäuser, Basel (1993)

    Book  MATH  Google Scholar 

  48. Khanna, S., Sudan, M., Trevisan, L., Williamson, D.P.: The approximability of constraint satisfaction problems. SIAM Journal on Computing 30, 1863–1920 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  49. Khanna, S., Sudan, M., Williamson, D.: A complete classification of the approximability of maximization problems derived from Boolean constraint satisfaction. In: Proceedings 29th Symposium on Theory of Computing, pp. 11–20. ACM Press, New York (1997)

    Google Scholar 

  50. Lau, D.: Function Algebras on Finite Sets. Monographs in Mathematics. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  51. Marx, D.: Parameterized complexity of constraint satisfaction problems. Computational Complexity 14(2), 153–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  52. Meyer, A.R., Stockmeyer, L.J.: The equivalence problem for regular expressions with squaring requires exponential time. In: Proceedings 13th Symposium on Switching and Automata Theory, pp. 125–129. IEEE Computer Society Press, Los Alamitos (1972)

    Chapter  Google Scholar 

  53. Makino, K., Tamaki, S., Yamamoto, M.: On the boolean connectivity problem for horn relations. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 187–200. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  54. Nordh, G., Jonsson, P.: An algebraic approach to the complexity of propositional circumscription. In: 19th Symposium on Logic in Computer Science, pp. 367–376. IEEE Computer Society, Los Alamitos (2004)

    Google Scholar 

  55. Nordh, G.: A trichotomy in the complexity of propositional circumscription. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 257–269. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  56. Nordh, G., Zanuttini, B.: Propositional abduction is almost always hard. In: Proceedings International Joint Conference on Artificial Intelligence, pp. 534–539 (2005)

    Google Scholar 

  57. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)

    MATH  Google Scholar 

  58. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  59. Post, E.L.: Determination of all closed systems of truth tables. Bulletin of the AMS 26, 437 (1920)

    Google Scholar 

  60. Post, E.L.: The two-valued iterative systems of mathematical logic. Annals of Mathematical Studies 5, 1–122 (1941)

    MathSciNet  Google Scholar 

  61. Reingold, O.: Undirected st-connectivity in log-space. In: Proceedings of the 37th Symposium on Theory of Computing, pp. 376–385. ACM Press, New York (2005)

    Google Scholar 

  62. Reith, S., Vollmer, H.: Optimal satisfiability for propositional calculi and constraint satisfaction problems. Information and Computation 186(1), 1–19 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  63. Schaefer, T.J.: The complexity of satisfiability problems. In: Proccedings 10th Symposium on Theory of Computing, pp. 216–226. ACM Press, New York (1978)

    Google Scholar 

  64. Schnoor, H.: Algebraic Techniques for Satisfiability Problems. PhD thesis, Leibniz Universität Hannover, Fakultät für Elektrotechnik und Informatik (2007)

    Google Scholar 

  65. Schnoor, I.: The Weak Base Method for Constraint Satisfaction. Ph.D thesis, Leibniz Universität Hannover, Fakultät für Elektrotechnik und Informatik (2007)

    Google Scholar 

  66. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time. In: Proceedings 5th ACM Symposium on the Theory of Computing, pp. 1–9. ACM Press, New York (1973)

    Google Scholar 

  67. Schnoor, H., Schnoor, I.: Partial polymorphisms and constraint satisfaction problems. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds.) Complexity of Constraints. LNCS, vol. 5250. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  68. Schnoor, H., Schnoor, I.: Enumerating all solutions for constraint satisfaction problems. In: 24th Symposium on Theoretical Aspects of Computer Science. LNCS, pp. 694–705. Springer, Heidelberg (2007)

    Google Scholar 

  69. Toda, S.: Computational Complexity of Counting Complexity Classes. Ph.D thesis, Tokyo Institute of Technology, Department of Computer Science, Tokyo (1991)

    Google Scholar 

  70. Toda, S.: PP is as hard as the polynomial time hierarchy. SIAM Journal on Computing 20, 865–877 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  71. Toda, S., Watanabe, O.: Polynomial time 1-Turing reductions from #PH to #P. Theoretical Computer Science 100, 205–221 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  72. Valiant, L.G.: The complexity of computing the permanent. Theoretical Computer Science 8, 189–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  73. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal of Computing 8(3), 411–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  74. Vollmer, H.: Komplexitätsklassen von Funktionen. Ph.D thesis, Universität Würzburg, Fakultät für Mathematik und für Informatik (1994)

    Google Scholar 

  75. Vollmer, H.: Introduction to Circuit Complexity – A Uniform Approach. Texts in Theoretical Computer Science. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  76. Vollmer, H.: Computational complexity of constraint satisfaction. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds.) CiE 2007. LNCS, vol. 4497, pp. 748–757. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  77. Wrathall, C.: Complete sets and the polynomial-time hierarchy. Theoretical Computer Science 3, 23–33 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  78. Zankó, V.: #P-completeness via many-one reductions. International Journal of Foundations of Computer Science 2, 77–82 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Creignou, N., Vollmer, H. (2008). Boolean Constraint Satisfaction Problems: When Does Post’s Lattice Help?. In: Creignou, N., Kolaitis, P.G., Vollmer, H. (eds) Complexity of Constraints. Lecture Notes in Computer Science, vol 5250. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92800-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92800-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92799-0

  • Online ISBN: 978-3-540-92800-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics