Skip to main content

Implementation of parallel DSMC method to adiabatic piston problem

  • 463 Accesses

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 67)

Abstract

In the last 25 years a number of Micro Electro Mechanical System (MEMS) have been developed. These MEMS devices not only include the mechanical systems but also the fluids. Knowledge about fluid flows in this scale is not as mature as the mechanical properties of the MEMS [1]. As their dimensions are between 1 mm and 1 micron [2], gas flows related with the MEMS devices have higher Knudsen numbers (Kn) similar to high atmosphere flights. If Kn is higher than 0.1, instead of the classical continuum based Euler or Navier-Stokes (N-S) equations, deterministic or stochastic atomistic models should be used. This is due to the departure from local thermodynamic equilibrium with increasing gradient, and linear relation between heat conduction and temperature gradient are lost.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-92744-0_9
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-92744-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Piekos and K.S.Breuer, Transactions of the ASME, 118 (1996) 464.

    Google Scholar 

  2. M. Gad-el-Hak, Mech.Ind., 2001.2, (2001) 313.

    Google Scholar 

  3. G.E. Karniadakis and A. Beskok, Micro Flows Fundamentals and Simulation, Springer-Verlag, New York, 2002.

    MATH  Google Scholar 

  4. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, Oxford, 1994.

    Google Scholar 

  5. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, Wiley, New York, 1985.

    MATH  Google Scholar 

  6. B. Crosignani, B.Di Porto and M. Segev, Am.J.Physics, 64 1996 610.

    Google Scholar 

  7. C. Gruber and L. Frachebourg, Physica 272 1999 392.

    Google Scholar 

  8. M.M. Mansour, C. Broeck and E. Kestemont, Europhysics Letters 69(4) 2005 510.

    Google Scholar 

  9. M.M. Mansour, A.L. Garcia and E. Baras, Physical Review E 73 2006 016121.

    Google Scholar 

  10. C. Shen, Rarefied Gas Dynamics Fundamentals, Simulations and Micro Flows, Springer-Verlag, Berlin, 2005.

    CrossRef  Google Scholar 

  11. W.L. Liou and Y. Fang, Microfluid Mechanics Principles and Modeling, McGraw Hill, New York, 2006.

    Google Scholar 

  12. G.J. Beau, Comput. Methods Appl.Mech.Engnr. 174 1999 319.

    Google Scholar 

  13. M.G. Kim, H.S. Kim H.S. and O.J. Kwon, Int.Journal for Num.Methods in Fluids 44 2004 1317.

    Google Scholar 

  14. S. Dietrich and I.D. Boyd, Journal of Comp.Physics 126 1996 328.

    Google Scholar 

  15. B. Wilkinson and M. Allen, Parallel Programming, Prentice-Hall, New Jersey, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sengil, N., Edis, . (2009). Implementation of parallel DSMC method to adiabatic piston problem. In: Parallel Computational Fluid Dynamics 2007. Lecture Notes in Computational Science and Engineering, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92744-0_9

Download citation