Skip to main content

A Fast Parallel Blood Flow Simulator

  • Conference paper
  • First Online:
Parallel Computational Fluid Dynamics 2007

Part of the book series: Lecture Notes in Computational Science and Engineering ((LNCSE,volume 67))

  • 449 Accesses

Abstract

This paper presents a fast parallel blood flow simulator with a long term goal that is to provide a close to real time simulator that can be used automatically withMRI data in clinical conditions. To achieve this performance, our method relies on three techniques; a level set method to obtain the geometry of the artery, the L2 penalty method to deal with complex geometry, and a fast domain decomposition solver designed for parallel processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gene Amdahl, “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities”, AFIPS Conference Proceedings, (30), pp. 483–485, 1967.

    Google Scholar 

  2. P.Angot, C.H.Bruneau and P.Fabrie,A Penalisation Method to Take into Account Obstacles in Viscous Flows,Numerische Mathematik,1999,81,pp 497–520.

    Article  MathSciNet  MATH  Google Scholar 

  3. E. Arquis and J.P. Caltagirone,Sur Les Conditions Hydrodynamiques au Voisinage d'une Interface Milieu Fluide-Milieux Poreux: Application a la Convection Naturelle,CRAS, Paris II,1984,299,pp1–4.

    Google Scholar 

  4. N. Barberou and M. Garbey and M. Hess and M. Resch and T. Rossi and J.Toivanen and D.Tromeur Dervout, Efficient metacomputing of elliptic linear and non-linear problems,Journal of Parallel and Distributed Computing, 63, p564–577, 2003.

    Article  Google Scholar 

  5. T.F. Chan and L.A. Vese,Active Contours without Edges,IEE Transaction on Image Processing,2001,10 (2),pp 266–277.

    Article  MATH  Google Scholar 

  6. A.J. Chorin, The numerical solution of the Navier-Stokes equations for an incompressible fluid, Bull. Amer. Math. Soc., Vol 73, pp 928, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  7. M.Garbey and D.Tromeur Dervout, On some Aitken like acceleration of the Schwarz Method, Int. J. for Numerical Methods in Fluids, 40, p1493–1513, 2002.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.Garbey, Acceleration of the Schwarz Method for Elliptic Problems, SIAM, J. SCI COMPUT., 26, 6, p 1871–1893, 2005.

    Article  MathSciNet  Google Scholar 

  9. M.Garbey, B.Hadri and W.Shyy, Fast Elliptic Solver for Incompressible Navier Stokes Flow and Heat Transfer Problems on the Grid, 43rd Aerospace Sciences Meeting and Exhibit Conference,Reno January 2005, AIAA-2005-1386, 2005.

    Google Scholar 

  10. David Keyes, Technologies and Tools for High-Performance Distributed Computing-Seventh Workshop on the DOE, Advanced CompuTational Software (ACTS) Collection,August 2006

    Google Scholar 

  11. S.Osher and N. Paragios,Geometric Level Set Methods in Imaging, Vision and Graphics, Springer Verlag, ISBN 0387954880, 2003.

    Google Scholar 

  12. C.S.Peskin,The Immersed Boundary Method, Acta Numerica pp1–39, 2002

    Google Scholar 

  13. K. Schneider and M.Farge, Numerical Simuation of the Transient Flow Behavior in Tube Bundles Using a Volume Penalization Method. Journal of Fluids and Structures, 20, pp 555–566, 2005.

    Article  Google Scholar 

  14. J.A.Sethian, Level Set Methods and Fast Marching Methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, Cambridge Monographs on Computational Mathematics, P.G.Ciarlet, A.Iserles, R.V.Kohn and M.H.Wright editors, 1999.

    Google Scholar 

  15. Tambasco M, Steinman DA. Path-dependent hemodynamics of the stenosed carotid bifurcation. Ann Biomed Eng. 2003 Oct;31(9):1054–65.

    Article  Google Scholar 

  16. T. Thom, N. Haase, W. Rosamond, V.J. Howard, J. Rumsfeld, T. Manolio Heart Disease and Stroke Statistics - 2006 Update. Circulation, 113(6):e85–e151, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hadri, B., Garbey, M. (2009). A Fast Parallel Blood Flow Simulator. In: Parallel Computational Fluid Dynamics 2007. Lecture Notes in Computational Science and Engineering, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92744-0_45

Download citation

Publish with us

Policies and ethics