Numerical simulation of 3D turbulent flows around bodies subjected to vortex-induced and forced vibration

  • Dmitri K. Zaitsev
  • Nikolai A. Schur
  • Evgueni M. Smirnov
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 67)


A parallel CFD technique is applied to fluid structure interaction problems. Namely, the vortex-induced vibration of an elastically mounted circular cylinder is investigated, and the flow generated by oscillations of a thin flexible blade (modeling a piezo-fan) is considered. The flow around vibrating bodies is computed with the deforming mesh aproach based on the ALE formulation, and the hydrodynamic force computed is used to predict the body motion/deformation. The turbulence is simulated via a RANS/LES vortex-resolving approach. In the cylinder case characterized by two-dimensional geometry, both 2D and 3D formulations are used, with the spanwise periodicity conditions imposed for 3D simulation. A comparison with experimental data has proven that the 2D simulation is inadequate.


Large Eddy Simulation Circular Cylinder Detach Eddy Simulation Fluid Structure Interaction Problem Cylinder Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Khalak, C.H.K. Williamson. J. Fluids and Structures. 13 (1999), 813–851CrossRefGoogle Scholar
  2. 2.
    R.D. Gabbai, H. Benaroya. J. Sound and Vibration, 282 (2005), 575–616CrossRefGoogle Scholar
  3. 3.
    H.M. Blackburn, R.N. Govardhan, C.H.K. Williamson. J. Fluids and Structures 15 (2000) 481–488CrossRefGoogle Scholar
  4. 4.
    J.R. Meneghini, F. Saltara, at all. Europ. J. Mechanics. B/Fluids. 23 (2004) 51–63zbMATHCrossRefGoogle Scholar
  5. 5.
    H. Al-Jamal, C. Dalton, J. Fluids and Structures 19 (1) (2004) 73–92CrossRefGoogle Scholar
  6. 6.
    C. Evangelinos, D. Lucor, G.E. Karniadakis, J. Fluids and Structure 14 (3) (2000) 429–440CrossRefGoogle Scholar
  7. 7.
    E. Guilmineau, P. Queutey. Proc. 7th Int. Conf. on Flow-Induced Vibration, Lucerne, Switzerland (2000) 257–264Google Scholar
  8. 8.
    P. Burmann, A. Raman, S.V. Garimella. IEEE trans. on components and packaging technologies, 25 (4) 2003, 592–600CrossRefGoogle Scholar
  9. 9.
    M. Wait, S. Basak, S.V. Garimella. TCPT-2005-086, Computer and Information Technology, Purdue Univ., 2005, 19pGoogle Scholar
  10. 10.
    T. Acikalin. ME 608 Final Project, School of Mechanical Engineering, Purdue University, 2002, 8pGoogle Scholar
  11. 11.
    J.H. Ferziger, M. Peric. Computational methods for fluid dynamics. Berlin: Springer, 1999, 389pzbMATHGoogle Scholar
  12. 12.
    A.Travin, M.Shur, M.Strelets, P.R.Spalart. In: Advances in LES of Complex Flows (Proc. EUROMECH Colloquium 412), Kluwer Academic Publishers, 2002. Vol.65. P.239.Google Scholar
  13. 13.
    F.R. Menter. AIAA Journal, 32 (1994), 1598–1605CrossRefGoogle Scholar
  14. 14.
    E.Smirnov, D.Zaitsev. In: ECCOMAS 2004. (CD-ROM proceedings), 13p.Google Scholar
  15. 15.
    A.I. Kirillov, V.V. Ris, E.M. Smirnov, D.K. Zaitsev. In: Heat Transfer in Gas Turbine Systems (Annals of the N.Y.Acad.Sci., Vol.934). - N.Y.Acad.Sci., N.Y., 2001, 456–463Google Scholar
  16. 16.
    E.M. Smirnov, N.G. Ivanov, A.G. Abramov, et al. In: Parallel CFD. Advanced Numerical Methods Software and Application (Proc. ParCFD-03). Elsevier. 2004. 219–226Google Scholar
  17. 17.
    A. Khalak, C.H.K. Williamson, J. Fluids and Structures. 10 (1996) 455–472CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Dmitri K. Zaitsev
    • 1
  • Nikolai A. Schur
    • 1
  • Evgueni M. Smirnov
    • 1
  1. 1.Dept. AerodynamicsSt.-Petersburg State Polytechnic UniversitySt.-PetersburgRussia

Personalised recommendations