Skip to main content

Highly Scalable Multiphysics Computational Framework for Propulsive Energetic Systems

  • 427 Accesses

Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE,volume 67)

Abstract

A computational framework to perform multiphase ow simulation is described and one of its application is focused on modelling of solid-propellant rocket motors. This framework allows to compute the chamber dynamics of the gas mixture, investigate the evolution of Al Lagrangian burning droplets and understand the generation of alumina smoke. Unstructured grids are used to enable meshing of geometrically complex configurations. An efficient parallel droplet-localization algorithm has been developed for unstructured mixed meshes.

Keywords

  • Unstructured Grid
  • Nozzle Wall
  • Droplet Impact
  • Nozzle Throat
  • Smoke Particle

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-540-92744-0_16
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   179.00
Price excludes VAT (USA)
  • ISBN: 978-3-540-92744-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   229.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G.P. Sutton and O. Biblarz, Rocket Propulsion Elements. 7th Edition, Wiley, 2001.

    Google Scholar 

  2. M. Salita, J. Prop. Power 11 (1995) 10.

    Google Scholar 

  3. J.P. Ferry and S. Balachandar, Power Technology 125(2002) 131–139.

    Google Scholar 

  4. A. Haselbacher, AIAA Paper 2005-0879 (2005).

    Google Scholar 

  5. A. Haselbacher, AIAA Paper 2006-1274 (2006).

    Google Scholar 

  6. A. Haselbacher and F.M. Najjar, AIAA Paper 2006-1292 (2006).

    Google Scholar 

  7. A. Haselbacher, F. Najjar, and J. Ferry, J. Comp. Phys. 225 (2007) 2198-2213.

    Google Scholar 

  8. T.L. Jackson, F.M. Najjar, and J. Buckmaster, J. Prop. Power 21(2005) 925.

    Google Scholar 

  9. B. Larrouturou, J. Comp. Phys. 95 (1991) 59.

    Google Scholar 

  10. F.M. Najjar, A. Haselbacher, J.P. Ferry, B. Wasistho, S. Balachandar, and R.D. Moser, AIAA Paper 2003-3700 (2003).

    Google Scholar 

  11. F.M. Najjar J.P. Ferry J.P., A. Haselbacher, and S. Balachandar, J. SpaceCraft & Rockets 43 (2006) 1258.

    Google Scholar 

  12. P.L. Roe P.L., J. Comp. Phys. 43 (1981) 357.

    Google Scholar 

  13. J.F. Widener and M.W. Beckstead, AIAA 98-3824 (1998).

    Google Scholar 

  14. A.A. Wray, unpublished manuscript (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Najjar, F., Haselbacher, A., Fiedler, R., Balachandar, S., Moser, R. (2009). Highly Scalable Multiphysics Computational Framework for Propulsive Energetic Systems. In: Parallel Computational Fluid Dynamics 2007. Lecture Notes in Computational Science and Engineering, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92744-0_16

Download citation