Material Properties of Alginates

  • Ivan DonatiEmail author
  • Sergio Paoletti
Part of the Microbiology Monographs book series (MICROMONO, volume 13)


The present chapter deals with the description of the main characteristics of alginate as a material. Sources and the chemical structure of the polysaccharide are discussed. Particular attention is devoted to the definition of the comonomer sequence and its determination together with chemical and biochemical modifications of alginate. The stability of alginate molecules is discussed from the point of view of the effect on the polymer molecular weight. The characteristics of the polysaccharide in solution are tackled looking both at the equilibrium properties (thermodynamic properties) and at the nonequilibrium ones (viscosity in dilute and semidilute solution). The second part of this contribution is focused on the analyses of the ion-binding properties of alginate towards divalent ions. A general description of the “egg-box” model is provided together with a brief overview of recent findings on this topic. The mechanism of hydrogel formation and the description of the mechanical properties of alginate gels in small and large deformation ranges are addressed.


Persistence Length Alginate Hydrogel Guluronic Acid Mannuronic Acid Alginate Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Andresen I-L, Skipnes O, Smidsrød O, Østgaard K, Hemmer PC (1977) Some biological functions of matrix components in benthic algae in relation to their chemistry and the composition of seawater. ACS Symp Ser 48:361–381CrossRefGoogle Scholar
  2. Arnott S, Bian W, Chandrasekaran R, Manis B (2000) Lessons for today and tomorrow from yesterday - the structure of alginic acid. Fibre Diffr Rev 36:44–51Google Scholar
  3. Atkins ED, Nieduszynski IA, Mackie W, Parker KD, Smolko EE (1973a) Structural components of alginic acid. I. The crystalline structure of poly-β-D-mannuronic acid. Results of x-ray diffraction and polarized infrared studies. Biopolymers 12:1865–1878Google Scholar
  4. Atkins ED, Nieduszynski IA, Mackie W, Parker KD, Smolko EE (1973b) Structural components of alginic acid. II. The crystalline structure of poly-alpha-L-guluronic acid. Results of x-ray diffraction and polarized infrared studies. Biopolymers 12:1879–1887Google Scholar
  5. Atsuki K, Tomoda Y (1926) Studies on seaweeds of Japan I. The chemical constituents of Laminaria. J Soc Chem Ind Jpn 29:509–517Google Scholar
  6. Benegas JC, Di Blas A, Paoletti S, Cesàro A (1992) Some aspects of the enthalpy of dilution of biological polyelectrolytes. J Therm Anal Calorim 38:2613–2620CrossRefGoogle Scholar
  7. Berth (1992) Methodical aspects of characterization of alginate and pectate by light scattering and viscometry coupled with GPC. Carbohydr Polym 19:1CrossRefGoogle Scholar
  8. Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C, Luca G, Basta G, Calafiore R (2006) Preparation and in vitro and in vivo characterization of composite microcapsules for cell encapsulation. Int J Pharm 324:27–36PubMedCrossRefGoogle Scholar
  9. Braccini I, Grasso RP, Pérez S (1999) Conformational and configurational features of acidic polysaccharides and their interactions with calcium ions: a molecular modeling investigation. Carbohydr Res 317:119–130PubMedCrossRefGoogle Scholar
  10. Braccini I, Pérez S (2001) Molecular basis of Ca2+-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules 2:1089–1096PubMedCrossRefGoogle Scholar
  11. Campos M, Martínez-Salazar JM, Lloret L, Moreno S, Nuñez C, Espín G, Soberón-Chavéz G (1996) Characterization of the gene coding for GDP-mannose dehydrogenase (algD) from Azotobacter vinelandii. J Bacteriol 178:1793–1799PubMedGoogle Scholar
  12. Cesàro A, Delben F, Flaibani A, Paoletti S (1988a) The interaction of lead (II) with glycuronans: U.V. absorption and circular dichroism spectra. Carbohydr Res 181:13–21Google Scholar
  13. Cesàro A, Delben F, Paoletti S (1988b) Interaction of divalent cations with polyuronates. J Chem Soc Faraday Trans 1 84:2573–2584CrossRefGoogle Scholar
  14. Chambon F, Winter HH (1987) Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol 31:683–697CrossRefGoogle Scholar
  15. Cottrell IW, Kovacs P (1980) Alginates. In: Crawford HB, Williams J (eds) Handbook of water-soluble gums and resins. McGraw-Hill, Auckland, pp 21–43Google Scholar
  16. de Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, IthacaGoogle Scholar
  17. Delben F, Cesáro A, Paoletti S, Crescenzi V (1982) Monomer composition and acetyl content as main determinants of the ionization behavior of alginates. Carbohydr Res 100:C46–C50CrossRefGoogle Scholar
  18. Dentini M, Rinaldi G, Risica D, Barbetta A, Skjåk-Bræk G (2005) Comparative studies on solution characteristics of mannuronan epimerized by C-5 epimerases. Carbohydr Polym 59:489–499CrossRefGoogle Scholar
  19. de Vos P, Faas MM, Strand B, Calafiore R (2006) Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 27:5603–5617PubMedCrossRefGoogle Scholar
  20. Doi M, Kuzuu NY (1980) Nonlinear elasticity of rodlike macromolecules in condensed state. J Polym Sci Polym Phys 18:409–419Google Scholar
  21. Donati I, Vetere A, Gamini A, Skjåk-Bræk G, Coslovi A, Campa C, Paoletti S (2003a) Galactose-substituted alginate: preliminary characterization and study of gelling properties. Biomacromolecules 4:624–631CrossRefGoogle Scholar
  22. Donati I, Gamini A, Skjåk-Bræk G, Vetere A, Campa C, Coslovi A, Paoletti S (2003b) Determination of the diadic composition of alginate by means of circular dichroism: a fast and accurate improved method. Carbohydr Res 338:1139–1142CrossRefGoogle Scholar
  23. Donati I, Coslovi A, Gamini A, Skjåk-Bræk G, Vetere A, Campa C, Paoletti S (2004) Galactose-substituted alginate 2: conformational aspects. Biomacromolecules 5:186–196PubMedCrossRefGoogle Scholar
  24. Donati I, Draget KI, Borgogna M, Paoletti S, Skjåk-Bræk G (2005a) Tailor-made alginate bearing galactose moieties on mannuronic residues: selective modification achieved by a chemoenzymatic strategy. Biomacromolecules 6:88–98CrossRefGoogle Scholar
  25. Donati I, Holtan S, Mørch YA, Borgogna M, Dentini M, Skjåk-Bræk G (2005b) New hypothesis on the role of alternating sequences in calcium-alginate gels. Biomacromolecules 6:1031–1040CrossRefGoogle Scholar
  26. Donati I, Benegas JC, Paoletti S (2006a) Polyelectrolyte study of the calcium-induced chain association of pectate. Biomacromolecules 7:3439–3447CrossRefGoogle Scholar
  27. Donati I, Cesàro A, Paoletti S (2006b) Specific interactions versus counterion condensation. 1. Nongelling ions/polyuronate systems. Biomacromolecules 7:281–287Google Scholar
  28. Donati I, Haug IJ, Scarpa T, Borgogna M, Draget KI, Skjåk-Bræk G, Paoletti S (2007) Synergistic effects in semidilute mixed solutions of alginate and lactose-modified chitosan (chitlac). Biomacromolecules 8:957–962PubMedCrossRefGoogle Scholar
  29. Draget KI, Østagaard K, Smidsrød O (1991) Homogeneous alginate gels: a technical approach. Carbohydr Polym 14:159–178Google Scholar
  30. Draget KI, Simensen MK, Onsøyen E, Smidsrød O (1993) Gel strength of Ca-limited alginate gels made in situ. Hydrobiologia 260–261:563–565Google Scholar
  31. Draget KI, Skjåk Bræk G, Smidsrød O (1994) Alginic acid gels: the effect of alginate chemical composition and molecular weight. Carbohydr Polym 25:31–38CrossRefGoogle Scholar
  32. Draget KI, Strand B, Hartmann M, Valla S, Smidsrød O, Skjåk-Bræk G (2000) Ionic and acid gel formation of epimerised alginates; the effect of AlgE4. Int J Biol Macromol 27:117–122PubMedCrossRefGoogle Scholar
  33. Draget KI, Gåserød O, Aune I, Andersen PO, Storbakken B, Stokke BT, Smidsrød O (2001) Effects of molecular weight and elastic segment flexibility on syneresis in Ca-alginate gels. Food Hydrocolloids 15:485–490CrossRefGoogle Scholar
  34. Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates form algae. In: Steinbuchel A, Rhee SK (eds) Polysaccharides and polyamides in the food industry: properties, production, and patents. Wiley, Weinheim, pp 1–30Google Scholar
  35. Dusseault J, Leblond FA, Robitaille R, Jourdan G, Tessier J, Ménard M, Henley N, Hallé JP (2005) Microencapsulation of living cells in semi-permeable membranes with covalently cross-linked layers. Biomaterials 26:1515–1522PubMedCrossRefGoogle Scholar
  36. Dusseault J, Langlois G, Meunier MC, Ménard M, Perreault C, Hallé JP (2008) The effect of covalent cross-links between the membrane components of microcapsules on the dissemination of encapsulated malignant cells. Biomaterials 29:917–924PubMedCrossRefGoogle Scholar
  37. Ertesvåg H, Doseth B, Larsen B, Skjåk-Bræk G, Valla S (1994) Cloning and expression of an Azotobacter vinelandii mannuronan C-5-epimerase gene. J Bacteriol 176:2846–2853PubMedGoogle Scholar
  38. Ertesvåg H, Valla S, Skjåk-Bræk G (1996) Genetics and Biosynthesis of alginates. Carbohydrates in Europe 14:14–18Google Scholar
  39. Ertesvåg H, Høidal HK, Skjåk-Bræk G, Valla S (1998) The Azotobacter vinelandii mannuronan C-5-epimerase AlgE1 consists of two separate catalytic domains. J Biol Chem 273:30927–30932PubMedCrossRefGoogle Scholar
  40. Fisher FG, Dörfel H (1955) Die Polyuronsäuren der Braunalgen (Kohlenhydrate der Algen). Z Physiol Chem 302:186–203Google Scholar
  41. Fixman M (1964) Polyelectrolytes: a fuzzy sphere model. J Chem Phys 41:3772–3778CrossRefGoogle Scholar
  42. Flory PJ (1953) Principles of polymer chemistry. Oxford University Press, IthacaGoogle Scholar
  43. Gacesa P (1992) Enzymic degradation of alginates. Int J Biochem 24:545–552PubMedCrossRefGoogle Scholar
  44. Gamini A, Paoletti S, Zanetti F (1992) Chain rigidity of polyuronated: static light scattering of aqueous solutions of hyaluronate and alginate. In: Harding SE, Sattelle DB, Bloomfield VA (eds) Laser light scattering in biochemistry. Royal Society of Chemistry, Cambridge, pp 294–311Google Scholar
  45. Gardel ML, Shin JH, MacKintosh FC, Mahadevan L, Matsudaira P, Weitz DA (2004) Elastic behavior of cross-linked and bundled actin networks. Science 304:1301–1305PubMedCrossRefGoogle Scholar
  46. Gåserød O, Smidsrød O, Skjåk-Bræk G (1998) Microcapsules of alginate-chitosan–I: a quantitative study of the interaction between alginate and chitosan. Biomaterials 19:1815–1825PubMedCrossRefGoogle Scholar
  47. Gåserød O, Sannes A, Skjåk-Bræk G (1999) Microcapsules of alginate-chitosan–II. A study of capsule stability and permeability. Biomaterials 20:773–783Google Scholar
  48. Gimmestad M, Sletta H, Ertesvåg H, Bakkevig K, Jain S, Suh Sj, Skjåk-Bræk G, Ellingsen TE, Ohman DE, Valla S (2003) The Pseudomonas fluorescens AlgG protein, but not its mannuronan C-5-epimerase activity, is needed for alginate polymer formation. J Bacteriol 185:3515–3523PubMedCrossRefGoogle Scholar
  49. Gorin PAJ, Spencer JFT (1966) Exocellular alginic acid from Azotobacter Vinelandii. Can J Chem 44:993–998CrossRefGoogle Scholar
  50. Govan JR, Fyfe JA, Jarman TR (1981) Isolation of alginate-producing mutants of Pseudomonas fluorescens, Pseudomonas putida and Pseudomonas mendocina. J Gen Microbiol 125:217–220PubMedGoogle Scholar
  51. Grant GT, Morris ER, Rees DA, Smith PJC, Thom D (1973) Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Lett 32:195–198CrossRefGoogle Scholar
  52. Grasdalen H (1983) High-field, 1H-n.m.r. spectroscopy of alginate: sequential structure and linkage conformations. Carbohydr Res 118:255–260Google Scholar
  53. Grasdalen H, Larsen B, Smidsrød O (1977) 13C-N.m.r. studies of alginate. Carbohydr Res 56:C11–C15CrossRefGoogle Scholar
  54. Grasdalen H, Larsen B, Smidsrød O (1979) A p.m.r. study of the composition and sequence of uronate residues in alginates. Carbohydr Res 68:23–31Google Scholar
  55. Grasdalen H, Larsen B, Smisrød O (1981) 13C-n.m.r. studies of monomeric composition and sequence in alginate. Carbohydr Res 89:179–191Google Scholar
  56. Hartmann M, Holm OB, Johansen GAB, Skjåk-Bræk G, Stokke BT (2002a) Mode of action of recombinant Azotobacter vinelandii mannuronan C-5 epimerases AlgE2 and AlgE4. Biopolymers 63:77–88CrossRefGoogle Scholar
  57. Hartmann M, Duun AS, Markussen S, Grasdalen H, Valla S, Skjåk-Bræk G (2002b) Time-resolved 1H and 13C NMR spectroscopy for detailed analyses of the Azotobacter vinelandii mannuronan C-5 epimerase reaction. Biochim Biophys Acta Gen Subj 1570:104–112CrossRefGoogle Scholar
  58. Hartmann M, Dentini M, Draget KI, Skjåk-Bræk G (2006) Enzymatic modification of alginates with the mannuronan C-5epimerase AlgE4 enhances their solubility at low pH. Carbohydr Polym 63:257–262CrossRefGoogle Scholar
  59. Hasse C, Bohrer T, Barth P, Stinner B, Cohen R, Cramer H, Zimmermann U, Rothmund M (2000) Parathyroid xenotransplantation without immunosuppression in experimental hypoparathyroidism: long-term in vivo function following microencapsulation with a clinically suitable alginate. World J Surg 24:1361–1366PubMedCrossRefGoogle Scholar
  60. Haug A (1959a) Ion exchange properties of alginate fractions. Acta Chem Scand 13:1250–1251CrossRefGoogle Scholar
  61. Haug A (1959b) Fractionation of alginic acid. Acta Chem Scand 13:601–603CrossRefGoogle Scholar
  62. Haug, A (1964) Composition and properties of alginates. Dissertation, Norwegian Institute of Technology, TrondheimGoogle Scholar
  63. Haug A, Larsen B (1963) The solubility of alginate at low pH. Acta Chem Scand 17:1653–1662CrossRefGoogle Scholar
  64. Haug A, Smidsrød O (1965) Fractionation of alginate by precipitation with calcium and magnesium ions. Acta Chem Scand 19:1221–1226CrossRefGoogle Scholar
  65. Haug A, Smidsrød O (1967) Strontium-calcium selectivity of alginates. Nature 215:757PubMedCrossRefGoogle Scholar
  66. Haug A, Smidsrød O (1970) Selectivity of some anionic polymers for divalent metal ions. Acta Chem Scand 24:843–854CrossRefGoogle Scholar
  67. Haug A, Larsen B, Smidsrød O (1963) The degradation of alginates at different pH values. Acta Chem Scand 17:1466–1468CrossRefGoogle Scholar
  68. Haug A, Larsen B, Smidsrød O (1966) A study on the constitution of alginic acid by partial hydrolysis. Acta Chem Scand 20:183–190CrossRefGoogle Scholar
  69. Haug A, Myklestad S, Larsen B, Smidsrød O (1967a) Correlation between chemical structure and physical properties of alginates. Acta Chem Scand 21:768–778CrossRefGoogle Scholar
  70. Haug A, Larsen B, Smidsrød O (1967b) Alkaline degradation of alginate. Acta Chem Scand 21:2859–2870CrossRefGoogle Scholar
  71. Haug A, Larsen B, Smidsrød O (1967c) Studies on the sequence of uronic acid residues in alginic acid. Acta Chem Scand 21:691–704CrossRefGoogle Scholar
  72. Heinemann M, Meinberg H, Büchs J, Koß HJ, Ansorge-Schumacher MB (2005) Method for quantitative determination of spatial polymer distribution in alginate beads using Raman spectroscopy. Appl Spectrosc 59:280–285PubMedCrossRefGoogle Scholar
  73. Hertzberg S, Moen E, Vogelsang C, Østgaard K (1995) Mixed photo-cross-linked polyvinyl alcohol and calcium-alginate gels for cell entrapment. Appl Microbiol Biot 43:10–17CrossRefGoogle Scholar
  74. Higgs PG, Ball RC (1989) Some ideas concerning the elasticity of biopolymer networks. Macro­molecules 22:2432–2437CrossRefGoogle Scholar
  75. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12PubMedCrossRefGoogle Scholar
  76. Høidal HK, Ertesvåg H, Skjåk-Bræk G, Stokke BT, Valla S (1999) The recombinant Azotobacter vinelandii mannuronan C-5-epimerase AlgE4 epimerizes alginate by a nonrandom attack mechanism. J Biol Chem 274:12316–12322PubMedCrossRefGoogle Scholar
  77. Holtan S, Bruheim P, Skjåk-Bræk G (2006) Mode of action and subsite studies of the guluronan block-forming mannuronan C-5 epimerases AlgE1 and AlgE6. Biochem J 395:319–329PubMedCrossRefGoogle Scholar
  78. Indergaard M, Skjåk-Bræk G (1987) Characteristics of alginate from Laminaria digitata cultivated in a high-phosphate environment. Hydrobiologia 151–152:541–549CrossRefGoogle Scholar
  79. Joki T, Machluf M, Atala A, Zhu J, Seyfried NT, Dunn IF, Abe T, Carroll RS, Black PM (2001) Continuous release of endostatin from microencapsulated engineered cells for tumor therapy. Nat Biotechnol 19:35–39PubMedCrossRefGoogle Scholar
  80. Keith RC, Keith LMW, Hernandez-Guzman G, Uppalapati SR, Bender CL (2003) Alginate gene expression by Pseudomonas syringae pv. tomato DC3000 in host and non-host plants. Micro­biology 149:1127–1138Google Scholar
  81. Kohn R, Luknar O (1977) Intermolecular calcium ion binding on polyuronates - polygalacturonate and polyguluronate. Collect Czech Chem C 42:731–744Google Scholar
  82. Kong HJ, Smih MK, Mooney DJ (2003) Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 24:4023–4029PubMedCrossRefGoogle Scholar
  83. Kulseng B, Thu B, Espevik T, Skjåk-Bræk G (1997) Alginate polylysine microcapsules as immune barrier: permeability of cytokines and immunoglobulins over the capsule membrane. Cell Transplant 6:387–394PubMedCrossRefGoogle Scholar
  84. Larsen B, Painter TJ (1969) The periodate-oxidation limit of alginate. Carbohydr Res 10:186–187CrossRefGoogle Scholar
  85. Larsen B, Smidsrød O, Painter T, Haug A (1970) Calculation of the nearest-neighbour frequencies in fragments of alginate from the yields of free monomer after partial hydrolysis. Acta Chem Scand 24:726–728CrossRefGoogle Scholar
  86. Lawrie G, Keen I, Drew B, Chandler-Temple A, Rintoul L, Fredericks P, Grøndahl L (2007) Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromolecules 8:2533–2541PubMedCrossRefGoogle Scholar
  87. Lee KY, Mooney DJ (2001) Hydrogels for tissue engineering. Chem Rev 101:1869–1880PubMedCrossRefGoogle Scholar
  88. Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910PubMedCrossRefGoogle Scholar
  89. Linke WA, Ivemeyer M, Mundel P, Stockmeier MR, Kolmerer B (1998) Nature of PEVK-titin elasticity in skeletal muscle. Proc Natl Acad Sci U S A 95:8052–8057PubMedCrossRefGoogle Scholar
  90. Linker A, Evans LR (1984) Isolation and characterization of an alginase from mucoid strains of Pseudomonas aeruginosa. J Bacteriol 159:958–964PubMedGoogle Scholar
  91. Linker A, Jones RS (1966) A new polysaccharide resembling alginic acid isolated from pseudomonads. J Biol Chem 241:3845–3851PubMedGoogle Scholar
  92. Littlecott GW (1982) Food gels – the role of alginates. Food Technol Aust 34:412–418Google Scholar
  93. Liu X, Qian L, Shu T, Tong Z (2003) Rheology characterization of sol-gel transition in aqueous alginate solutions induced by calcium cations through in situ release. Polymer 44:407–412CrossRefGoogle Scholar
  94. Lu L, Liu X, Dai L, Tong Z (2005) Difference in concentration dependence of relaxation critical exponent n for alginate solutions at sol-gel transition induced by calcium cations. Biomacromolecules 6:2150–2156PubMedCrossRefGoogle Scholar
  95. Lu L, Liu X, Tong Z, Gao Q (2006) Critical exponents and self-similarity for sol-gel transition in aqueous alginate systems induced by in situ release of calcium cations. J Phys Chem B 110:25013–25020PubMedCrossRefGoogle Scholar
  96. Mackie W, Noy R, Sellen DB (1980) Solution properties of sodium alginate. Biopolymers 19:1839–1860CrossRefGoogle Scholar
  97. Mancini M, Moresi M, Rancini R (1999a) Uniaxial compression and stress relaxation tests on alginate gels. J Texture Stud 30:639–657CrossRefGoogle Scholar
  98. Mancini M, Moresi M, Rancini R (1999b) Mechanical properties of alginate gels: empirical characterisation. J Food Eng 39:369–378CrossRefGoogle Scholar
  99. Manning GS (1969a) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51:924–933Google Scholar
  100. Manning GS (1969b) Limiting laws and counterion condensation in polyelectrolyte solutions II. Self-Diffusion of the small ions. J Chem Phys 51:934–938Google Scholar
  101. Manning GS (1977) Limiting laws and counterion condensation in polyelectrolyte solutions: IV. The approach to the limit and the extraordinary stability of the charge fraction. Biophys Chem 7:95–102Google Scholar
  102. Manning GS (1978) Limiting laws and counterion condensation in polyelectrolyte solutions: V. Further development of the chemical model. Biophys Chem 9:65–70Google Scholar
  103. Martin JE, Adolf D, Wilcoxon JP (1988) Viscoelasticity of near-critical gels. Phys Rev Lett 61:2620PubMedCrossRefGoogle Scholar
  104. Martinsen A, Skjåk Bræk G, Smidsrød O (1989) Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads. Biotechnol Bioeng 33:79–89Google Scholar
  105. Martinsen A, Skjåk-Bræk G, Smidsrød O, Zanetti F, Paoletti S (1991) Comparison of different methods for determination of molecular weight and molecular weight distribution of alginates. Carbohydr Polym 15:171–193CrossRefGoogle Scholar
  106. Martinsen A, Storrø I, Skjårk-Bræk G (1992) Alginate as immobilization material: III. Diffusional properties. Biotechnol Bioeng 39:186–194CrossRefGoogle Scholar
  107. Mitchell JR (1979) Rheology of polysaccharide solutions and gels. In: Blanshard JMV, Mitchell JR (eds) Polysaccharides in food. Butterworths, London, pp 51–72Google Scholar
  108. Mitchell JR (1980) The rheology of gels. J Texture Stud 11:315–337CrossRefGoogle Scholar
  109. Mitchell JR, Blanshard JMV (1976) Rheological properties of alginate gels. J Texture Stud 7:219–234CrossRefGoogle Scholar
  110. Moe ST, Skjåk-Bræk G, Elgsaeter A, Smidsrød O (1993) Swelling of covalently crosslinked alginate gels: influence of ionic solutes and nonpolar solvents. Macromolecules 26:3589–3597CrossRefGoogle Scholar
  111. Mørch YA, Donati I, Strand BL, Skjåk-Bræk G (2006) Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules 7:1471–1480PubMedCrossRefGoogle Scholar
  112. Mørch YA, Donati I, Strand BL, Skjåk-Bræk G (2007) Molecular engineering as an approach to design new functional properties of alginate. Biomacromolecules 8:2809–2814PubMedCrossRefGoogle Scholar
  113. Mørch YA, Holtan S, Donati I, Strand BL, Strand WI, Skjåk-Bræk G (2009) Mechanical properties of C5-epimerised alginates. Biomacromolecules 9:2360–2368Google Scholar
  114. Morris ER, Rees DA, Sanderson GR, Thom D (1975) Conformation and circular dichroism of uronic acid residues in glycosides and polysaccharides. J Chem Soc Perkin Trans 2 1418–1425Google Scholar
  115. Morris ER, Rees DA, Thom D, Boyd J (1978) Chiroptical and stoichiometric evidence of a specific, primary dimerisation process in alginate gelation. Carbohydr Res 66:145–154CrossRefGoogle Scholar
  116. Morris ER, Rees DA, Thom D (1980) Characterisation of alginate composition and block-structure by circular dichroism. Carbohydr Res 81:305–314CrossRefGoogle Scholar
  117. Morris ER, Cutler AN, Ross-Murphy SB, Rees DA, Price J (1981) Concentration and shear rate dependence of viscosity in random coil polysaccharide solutions. Carbohydr Polym 1:5–21CrossRefGoogle Scholar
  118. Odijk T, Houwaart AC (1978) On the theory of the excluded-volume effect of a polyelectrolyte in a 1–1 electrolyte solution. J Polym Sci Polym Phys 16:627–639Google Scholar
  119. Painter TJ (1983) Algal polysaccharides. In: Aspinall GO (ed) The polysaccharides. Academic, New York, pp 196–286Google Scholar
  120. Painter T, Smidsrød O, Larsen B, Haug A (1968) A computer study of the changes in composition-distribution occurring during random depolymerization of a binary linear heteropolysaccharide. Acta Chem Scand 22:1637–1648CrossRefGoogle Scholar
  121. Paoletti S, Cesàro A, Delben F, Crescenzi V, Rizzo R (1985) Polyelectrolytic aspects of conformational transitions and interchain interactions in ionic polysaccharide solutions: comparison of theory and microcalorimetric data. In: Dubin PL (ed) Microdomains in polymer solutions. Plenum, New York, pp 159–189Google Scholar
  122. Pedersen SS, Kharazmi A, Espersen F, Hoiby N (1990) Pseudomonas aeruginosa alginate in cystic fibrosis sputum and the inflammatory response. Infect Immun 58:3363–3368PubMedGoogle Scholar
  123. Peleg M, Campanella OH (1989) The mechanical sensitivity of soft compressible testing machines. J Rheol 33:455–467CrossRefGoogle Scholar
  124. Rokstad AM, Holtan S, Strand B, Steinkjer B, Ryan L, Kulseng B, Skjåk-Bræk G, Espevik T (2002) Microencapsulation of cells producing therapeutic proteins: optimizing cell growth and secretion. Cell Transplant 11:313–324PubMedGoogle Scholar
  125. Rokstad AM, Donati I, Borgogna M, Oberholzer J, Strand BL, Espevik T, Skjåk-Bræk G (2006) Cell-compatible covalently reinforced beads obtained from a chemoenzymatically engineered alginate. Biomaterials 27:4726–4737PubMedCrossRefGoogle Scholar
  126. Rowley JA, Mooney DJ (2002) Alginate type and RGD density control myoblast phenotype. J Biomed Mater Res 60:217–223PubMedCrossRefGoogle Scholar
  127. Rowley JA, Madlambayan G, Mooney DJ (1999) Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 20:45–53PubMedCrossRefGoogle Scholar
  128. Schimdt E, Vocke F (1926) Zur Kenntnis der Polyglykuronsäuren. Chem Ber 59:1585–1588Google Scholar
  129. Sherbrock-Cox V, Russell NJ, Gacesa P (1984) The purification and chemical characterisation of the alginate present in extracellular material produced by mucoid strains of Pseudomonas aeruginosa. Carbohydr Res 135:147–154PubMedCrossRefGoogle Scholar
  130. Sikorski P, Mo F, Skjåk-Bræk G, Stokke BT (2007) Evidence for egg-box-compatible interactions in calcium-alginate gels from fiber X-ray diffraction. Biomacromolecules 8:2098–2103PubMedCrossRefGoogle Scholar
  131. Sime W (1990) Alginates. In: Harris P (ed) Food gels. Elsevier, London, pp 53–78Google Scholar
  132. Skjåk-Bræk G, Larsen B, Grasdalen H (1985) The role of O-acetyl groups in the biosynthesis of alginate by Azotobacter vinelandii. Carbohydr Res 145:169–174CrossRefGoogle Scholar
  133. Skjåk-Bræk G, Grasdalen H, Larsen B (1986a) Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydr Res 154:239–250CrossRefGoogle Scholar
  134. Skjåk-Bræk G, Smidsrød O, Larsen B (1986b) Tailoring of alginates by enzymatic modification in vitro. Int J Biol Macromol 8:330–336CrossRefGoogle Scholar
  135. Skjåk-Bræk G, Grasdalen H, Smidsrød O (1989a) Inhomogeneous polysaccharide ionic gels. Carbohydr Polym 10:31–54CrossRefGoogle Scholar
  136. Skjåk-Bræk G, Zanetti F, Paoletti S (1989b) Effect of acetylation on some solution and gelling properties of alginates. Carbohydr Res 185:131–138CrossRefGoogle Scholar
  137. Smetana K (1993) Cell biology of hydrogels. Biomaterials 14:1046–1050PubMedCrossRefGoogle Scholar
  138. Smidsrød O (1970) Solution properties of alginate. Carbohydr Res 13:359–372CrossRefGoogle Scholar
  139. Smidsrød O (1974) Molecular basis of some physical properties of alginates in the gel state. Faraday Discuss Chem Soc 57:263–274CrossRefGoogle Scholar
  140. Smidsrød O, Draget KI (1996) Alginate gelation technology. In: Food colloids – proteins, lipids and polysaccharides. The Royal Society of Chemistry, pp 279–293Google Scholar
  141. Smidsrød O, Haug A (1971) Estimation of the relative stiffness of the molecular chain in polyelectrolytes from measurements of viscosity at different ionic strengths. Biopolymers 10:1213–1227PubMedCrossRefGoogle Scholar
  142. Smidsrød O, Haug A (1972) Properties of poly(1,4-hexuronates) in the gel state. II. Comparison of gels of different chemical composition. Acta Chem Scand 26:79–88Google Scholar
  143. Smidsrød O, Painter T (1973) Effect of periodate oxidation upon the stiffness of the alginate molecule in solution. Carbohydr Res 26:125–132CrossRefGoogle Scholar
  144. Smidsrød O, Skjåk-Bræk G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78PubMedCrossRefGoogle Scholar
  145. Smidsrød O, Whittington SG (1969) Monte Carlo investigation of chemical inhomogeneity in copolymers. Macromolecules 2:42–44CrossRefGoogle Scholar
  146. Smidsrød O, Haug A, Larsen B (1963a) Degradation of alginate in the presence of reducing compounds. Acta Chem Scand 17:2628–2637CrossRefGoogle Scholar
  147. Smidsrød O, Haug A, Larsen B (1963b) The influence of reducing substances on the rate of regradation of alginates. Acta Chem Scand 17:1473–1474CrossRefGoogle Scholar
  148. Smidsrød O, Haug A, Larsen B (1966) The influence of pH on the rate of hydrolysis of acidic polysaccharides. Acta Chem Scand 20:1026–1034PubMedCrossRefGoogle Scholar
  149. Smidsrød O, Haug A, Larsen B (1967) Oxidative-reductive depolymerization: a note on the comparison of degradation rates of different polymers by viscosity measurements. Carbohydr Res 5:482–485CrossRefGoogle Scholar
  150. Smidsrød O, Haug A, Lian B (1972) Properties of poly(1,4-hexuronates) in the gel state. I. Evaluation of a method for the determination of stiffness. Acta Chem Scand 26:71–78Google Scholar
  151. Smidsrød O, Glover RM, Whittington SG (1973) The relative extension of alginates having different chemical composition. Carbohydr Res 27:107–118CrossRefGoogle Scholar
  152. Soon-Shiong P, Heintz RE, Merideth N, Yao QX, Yao Z, Zheng T, Murphy M, Moloney MK, Schmehl M, Harris M, Mendez R, Mendez R, Sandford PA (1994) Insulin independence in a type 1 diabetic patient after encapsulated islet transplantation. Lancet 343:950–951PubMedCrossRefGoogle Scholar
  153. Stanford ECC (1881) Br Patent 142Google Scholar
  154. Stanford ECC (1883a) New substance obtained from some of the commoner species of marine algae; algin. Chem News 47:254–257Google Scholar
  155. Stanford ECC (1883b) New substance obtained from some of the commoner species of marine algae; algin. Chem News 47:267–269Google Scholar
  156. Stauffer D (1985) Introduction to percolation theory. Taylor and Francis, LondonGoogle Scholar
  157. Steginsky CA, Beale JM, Floss HG, Mayer RM (1992) Structural determination of alginic acid and the effects of calcium binding as determined by high-field n.m.r. Carbohydr Res 225:11–26PubMedCrossRefGoogle Scholar
  158. Stokke BT, Smidsrød O, Bruheim P, Skjåk-Bræk G (1991) Distribution of uronate residues in alginate chains in relation to alginate gelling properties. Macromolecules 24:4637–4645CrossRefGoogle Scholar
  159. Stokke BT, Smidsrød O, Brant DA (1993) Predicted influence of monomer sequence distribution and acetylation on the extension of naturally occurring alginates. Carbohydr Polym 22:57–66CrossRefGoogle Scholar
  160. Stokke BT, Draget KI, Smidsrød O, Yuguchi Y, Urakawa H, Kajiwara K (2000) Small-angle X-ray scattering and rheological characterization of alginate gels. 1. Ca-alginate gels. Macromolecules 33:1853–1863CrossRefGoogle Scholar
  161. Strand BL, Gåserød O, Kulseng B, Espevik T, Skjåk-Bræk G (2002) Alginate-polylysine-alginate microcapsules: effect of size reduction on capsule properties. J Microencapsul 19:615–630CrossRefGoogle Scholar
  162. Strand BL, Mørch YA, Espevik T, Skjåk-Bræk G (2003) Visualization of alginate-poly-L-lysine-alginate microcapsules by confocal laser scanning microscopy. Biotechnol Bioeng 82:386–394CrossRefGoogle Scholar
  163. Svanem BIG, Skjåk-Bræk G, Ertesvåg H, Valla S (1999) Cloning and expression of three new azotobacter vinelandii genes closely related to a previously described gene family encoding mannuronan C-5-epimerases. J Bacteriol 181:68–77PubMedGoogle Scholar
  164. Tanaka H, Kurosawa H, Kokufuta E (1984a) Preparation of immobilized glucoamylase using Ca-alginate gel coated with partially quaternized poly(ethyleneimine). Biotechnol Bioeng 26:1393–1394CrossRefGoogle Scholar
  165. Tanaka H, Matsumura M, Veliky IA (1984b) Diffusion characteristics of substrates in Ca-alginate gel beads. Biotechnol Bioeng 26:53–58CrossRefGoogle Scholar
  166. Taqieddin E, Amiji M (2004) Enzyme immobilization in novel alginate-chitosan core-shell microcapsules. Biomaterials 25:1937–1945PubMedCrossRefGoogle Scholar
  167. Thu B, Bruheim P, Espevik T, Smidsrød O, Soon-Shiong P, Skjåk-Bræk G (1996a) Alginate polycation microcapsules: I. Interaction between alginate and polycation. Biomaterials 17:1031–1040Google Scholar
  168. Thu B, Bruheim P, Espevik T, Smidsrød O, Soon-Shiong P, Skjåk-Bræk G (1996b) Alginate polycation microcapsules: II. Some functional properties. Biomaterials 17:1069–1079Google Scholar
  169. Thu B, Gåserød O, Paus D, Mikkelsen A, Skjåk-Bræk G, Toffanin R, Vittur F, Rizzo R (2000) Inhomogeneous alginate gel spheres: an assessment of the polymer gradients by synchrotron radiation-induced X-ray emission, magnetic resonance microimaging, and mathematical modeling. Biopolymers 53:60–71PubMedCrossRefGoogle Scholar
  170. Tielen P, Strathmann M, Jaeger KE, Flemming HC, Wingender J (2005) Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa. Microbiol Res 160:165–176PubMedCrossRefGoogle Scholar
  171. Toft K, Grasdalen H, Smidsrød O (1986) Synergistic gelation of alginates and pectins. ACS Symp Ser 310:117–132CrossRefGoogle Scholar
  172. Treloar LRJ (1949) The physics of rubber elasticity, 3rd edn. Clarendon, OxfordGoogle Scholar
  173. Vold IMN, Kristiansen KA, Christensen BE (2006) A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors. Biomacromolecules 7:2136–2146PubMedCrossRefGoogle Scholar
  174. Vold IMN, Kristiansen KA, Christensen BE (2007) A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors (addition/correction). Biomacromolecules 8:2627CrossRefGoogle Scholar
  175. Winn SR, Tresco PA, Zielinski B, Greene LA, Jaeger CB, Aebischer P (1991) Behavioral recovery following intrastriatal implantation of microencapsulated PC12 cells. Exp Neurol 113:322–329PubMedCrossRefGoogle Scholar
  176. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol 30:367–382CrossRefGoogle Scholar
  177. Wong TY, Preston LA, Schiller NL (2000) Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. Annu Rev Microbiol 54:289–340PubMedCrossRefGoogle Scholar
  178. Yang J, Goto M, Ise H, Cho CS, Akaike T (2002) Galactosylated alginate as a scaffold for hepatocytes entrapment. Biomaterials 23:471–479PubMedCrossRefGoogle Scholar
  179. Yilmazer G, Kokini JL (1991) Effect of polysorbate-60 on the stability of O/W emulsions stabilized by propylene glycol alginate and xanthan gum. J Texture Stud 22:289–301CrossRefGoogle Scholar
  180. Yilmazer G, Carrillo AR, Kokini JL (1991) Effect of propylene glycol alginate and xanthan gum on stability of O/W emulsions. J Food Sci 56:513–517CrossRefGoogle Scholar
  181. Yu J, Peñaloza-Vázquez A, Chakrabarty AM, Bender CL (1999) Involvement of the exopolysaccharide alginate in the virulence and epiphytic fitness of Pseudomonas syringae pv. syringae. Mol Microbiol 33:712–720CrossRefGoogle Scholar
  182. Zhang J, Daubert CR, Foegeding EA (2005) Fracture analysis of alginate gels. J Food Sci 70:e425–e431CrossRefGoogle Scholar
  183. Zhang J, Daubert CR, Foegeding EA (2007) A proposed strain-hardening mechanism for alginate gels. J Food Eng 80:157–165CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Life SciencesUniversity of TriesteTriesteItaly

Personalised recommendations