Advertisement

Resolution-Based Reasoning for Ontologies

  • Boris MotikEmail author
Chapter
Part of the International Handbooks on Information Systems book series (INFOSYS)

Summary

We overview the algorithms for reasoning with description logic (DL) ontologies based on resolution. These algorithms often have worst-case optimal complexity, and, by relying on vast experience in building resolution theorem provers, they can be implemented efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowledge base into a disjunctive datalog program, while preserving the set of entailed facts. This reduction enables the application of optimization techniques from deductive databases, such as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies with relatively small and simple TBoxes, but large ABoxes.

References

  1. 1.
    S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley, 1995.Google Scholar
  2. 2.
    F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, January 2003.Google Scholar
  3. 3.
    F. Baader and W. Snyder. Unification Theory. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532. 2001.Google Scholar
  4. 4.
    L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 2, pages 19–99. 2001.Google Scholar
  5. 5.
    L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation. Information and Computation, 121(2):172–192, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    C. Beeri and R. Ramakrishnan. On the power of magic. In Proc. PODS ’87, pages 269–283, San Diego, CA, USA, 1987.Google Scholar
  7. 7.
    A. Borgida. On the Relative Expressiveness of Description Logics and Predicate Logics. Artificial Intelligence, 82(1–2):353–367, 1996.MathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Buchheit, F. M. Donini, and A. Schaerf. Decidable Reasoning in Terminological Knowledge Representation Systems. Journal of Artificial Intelligence Research, 1:109–138, 1993.MathSciNetzbMATHGoogle Scholar
  9. 9.
    M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-Proving. Communications of the ACM, 5(7):394–397, 1962.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 9, pages 535–610. 2001.Google Scholar
  11. 11.
    T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on Database Systems, 22(3):364–418, 1997.CrossRefGoogle Scholar
  12. 12.
    I. Horrocks and U. Sattler. A Description Logic with Transitive and Inverse Roles and Role Hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    U. Hustadt, B. Motik, and U. Sattler. Reducing \({\mathcal{S}\mathcal{H}\mathcal{I}\mathcal{Q}}^{-}\) Description Logic to Disjunctive Datalog Programs. In Proc. KR 2004, pages 152–162, Whistler, Canada, 2004.Google Scholar
  14. 14.
    U. Hustadt, B. Motik, and U. Sattler. A Decomposition Rule for Decision Procedures by Resolution-based Calculi. In Proc. LPAR 2004, pages 21–35, Uruguay, 2005.Google Scholar
  15. 15.
    U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in Very Expressive Description Logics. In Proc. IJCAI 2005, pages 466–471, Edinburgh, UK, 2005.Google Scholar
  16. 16.
    U. Hustadt and R. A. Schmidt. On the Relation of Resolution and Tableaux Proof Systems for Description Logics. In Proc. IJCAI ’99, pages 202–207, Stockhom, Sweden, 1999.Google Scholar
  17. 17.
    W. H. Joyner. Resolution Strategies as Decision Procedures. Journal of the ACM, 23(3):398–417, 1976.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Y. Kazakov and H. de Nivelle. A Resolution Decision Procedure for the Guarded Fragment with Transitive Guards. In Proc. IJCAR 2004, pages 122–136, Cork, Ireland, 2004.Google Scholar
  19. 19.
    Y. Kazakov and B. Motik. A Resolution-Based Decision Procedure for \(\mathcal{S}\mathcal{H}\mathcal{O}\mathcal{I}\mathcal{Q}\). In Proc. IJCAR 2006, pages 662–667, Seattle, WA, USA, 2006.Google Scholar
  20. 20.
    O. Kutz, I. Horrocks, and U. Sattler. The Even More Irresistible SROIQ. In Proc. KR 2006, pages 68–78, Lake District, UK, 2006.Google Scholar
  21. 21.
    C. Lutz and U. Sattler. The Complexity of Reasoning with Boolean Modal Logics. In Proc. AiML 2000, pages 329–348, Leipzig, Germany, 2001.Google Scholar
  22. 22.
    B. Motik. Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany, January 2006.Google Scholar
  23. 23.
    B. Motik and U. Sattler. A Comparison of Reasoning Techniques for Querying Large Description Logic ABoxes. In Proc. LPAR 2006, pages 227–241, Cambodia, 2006.Google Scholar
  24. 24.
    R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering and Equality Constrained Clauses. Journal of Symbolic Computation, 19(4):312–351, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-Based Methods for Modal Logics. Logic Journal of the IGPL, 8(3):265–292, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    A. Nonnengart and C. Weidenbach. Computing Small Clause Normal Forms. In A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning, volume I, chapter 6, pages 335–367. 2001.Google Scholar
  27. 27.
    D. A. Plaisted and S. Greenbaum. A Structure-Preserving Clause Form Translation. Journal of Symbolic Logic and Computation, 2(3):293–304, 1986.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI Communications, 15(2–3):91–110, 2002.zbMATHGoogle Scholar
  29. 29.
    R. A. Schmidt and U. Hustadt. A Principle for Incorporating Axioms into the First-Order Translation of Modal Formulae. In Proc. CADE-19, pages 412–426, USA, 2003.Google Scholar
  30. 30.
    S. Tobies. Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis, RWTH Aachen, Germany, 2001.Google Scholar
  31. 31.
    M. Vardi. The Complexity of Relational Query Languages. In Proc. STOC ’82, pages 137–146, San Francisco, CA, USA, 1982.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.School of Computer ScienceUniversity of ManchesterManchesterUK

Personalised recommendations