Skip to main content

Finding Facilities Fast

  • Conference paper
Distributed Computing and Networking (ICDCN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5408))

Included in the following conference series:

Abstract

Clustering can play a critical role in increasing the performance and lifetime of wireless networks. The facility location problem is a general abstraction of the clustering problem and this paper presents the first constant-factor approximation algorithm for the facility location problem on unit disk graphs (UDGs), a commonly used model for wireless networks. In this version of the problem, connection costs are not metric, i.e., they do not satisfy the triangle inequality, because connecting to a non-neighbor costs ∞. In non-metric settings the best approximation algorithms guarantee an O(logn)-factor approximation, but we are able to use structural properties of UDGs to obtain a constant-factor approximation. Our approach combines ideas from the primal-dual algorithm for facility location due to Jain and Vazirani (JACM, 2001) with recent results on the weighted minimum dominating set problem for UDGs (Huang et al., J. Comb. Opt., 2008). We then show that the facility location problem on UDGs is inherently local and one can solve local subproblems independently and combine the solutions in a simple way to obtain a good solution to the overall problem. This leads to a distributed version of our algorithm in the \(\mathcal{LOCAL}\) model that runs in constant rounds and still yields a constant-factor approximation. Even if the UDG is specified without geometry, we are able to combine recent results on maximal independent sets and clique partitioning of UDGs, to obtain an O(logn)-approximation that runs in O(log* n) rounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-efficient communication protocol for wireless microsensor networks. In: HICSS 2000: Proceedings of the 33rd Hawaii International Conference on System Sciences, vol. 8, p. 8020 (2000)

    Google Scholar 

  2. Wu, T., Biswas, S.: Minimizing inter-cluster interference by self-reorganizing mac allocation in sensor networks. Wireless Networks 13(5), 691–703 (2007)

    Article  Google Scholar 

  3. Wan, P.J., Alzoubi, K.M., Frieder, O.: Distributed construction of connected dominating set in wireless ad hoc networks. Mob. Netw. Appl. 9(2), 141–149 (2004)

    Article  Google Scholar 

  4. Wang, Y., Li, X.Y.: Localized construction of bounded degree and planar spanner for wireless ad hoc networks. In: DIALM-POMC 2003: Proceedings of the 2003 joint workshop on Foundations of mobile computing, pp. 59–68 (2003)

    Google Scholar 

  5. Wang, Y., Wang, W., Li, X.Y.: Distributed low-cost backbone formation for wireless ad hoc networks. In: MobiHoc., pp. 2–13 (2005)

    Google Scholar 

  6. Deb, B., Nath, B.: On the node-scheduling approach to topology control in ad hoc networks. In: MobiHoc 2005: Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing, pp. 14–26 (2005)

    Google Scholar 

  7. Kang, J., Zhang, Y., Nath, B.: Analysis of resource increase and decrease algorithm in wireless sensor networks. In: ISCC 2006: Proceedings of the 11th IEEE Symposium on Computers and Communications, pp. 585–590 (2006)

    Google Scholar 

  8. Talwar, K.: Bypassing the embedding: algorithms for low dimensional metrics. In: STOC 2004: Proceedings of the thirty-sixth annual ACM symposium on Theory of computing, pp. 281–290 (2004)

    Google Scholar 

  9. Bilò, V., Caragiannis, I., Kaklamanis, C., Kanellopoulos, P.: Geometric clustering to minimize the sum of cluster sizes. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 460–471. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Cheng, X., Huang, X., Li, D., Wu, W., Du, D.Z.: A polynomial-time approximation scheme for the minimum-connected dominating set in ad hoc wireless networks. Networks 42(4), 202–208 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ambühl, C., Erlebach, T., Mihalák, M., Nunkesser, M.: Constant-factor approximation for minimum-weight (connected) dominating sets in unit disk graphs. In: APPROX-RANDOM, pp. 3–14 (2006)

    Google Scholar 

  12. Erlebach, T., van Leeuwen, E.J.: Domination in geometric intersection graphs. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 747–758. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Huang, Y., Gao, X., Zhang, Z., Wu, W.: A better constant-factor approximation for weighted dominating set in unit disk graph. Journal of Combinatorial Optimization (2008)

    Google Scholar 

  14. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian relaxation. J. ACM 48(2), 274–296 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Frank, C.: Algorithms for Sensor and Ad Hoc Networks. Springer, Heidelberg (2007)

    Google Scholar 

  16. Kuehn, A.A., Hamburger, M.J.: A heuristic program for locating warehouses. Management Science 9(4), 643–666 (1963)

    Article  Google Scholar 

  17. Stollsteimer, J.F.: A working model for plant numbers and locations. Management Science 45(3), 631–645 (1963)

    Google Scholar 

  18. Balinski, M.L.: On finding integer solutions to linear programs. In: Proceedings of IBM Scientific Computing Symposium on Combinatorial Problems, pp. 225–248 (1966)

    Google Scholar 

  19. Kaufman, L., Eede, M.V., Hansen, P.: A plant and warehouse location problem. Operational Research Quarterly 28(3), 547–554 (1977)

    Article  MATH  Google Scholar 

  20. Cornuejols, G., Nemhouser, G., Wolsey, L.: Discrete Location Theory. Wiley, Chichester (1990)

    Google Scholar 

  21. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Mathematical Programming 22(1), 148–162 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lin, J.H., Vitter, J.S.: e-approximations with minimum packing constraint violation (extended abstract). In: STOC 1992: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pp. 771–782 (1992)

    Google Scholar 

  23. Shmoys, D.B., Tardos, É., Aardal, K.: Approximation algorithms for facility location problems (extended abstract). In: STOC 1997: Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pp. 265–274 (1997)

    Google Scholar 

  24. Moscibroda, T., Wattenhofer, R.: Facility location: distributed approximation. In: PODC 2005: Proceedings of the twenty-fourth annual ACM symposium on Principles of distributed computing, pp. 108–117 (2005)

    Google Scholar 

  25. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics (2000)

    Google Scholar 

  26. Frank, C., Römer, K.: Distributed facility location algorithms for flexible configuration of wireless sensor networks. In: Aspnes, J., Scheideler, C., Arora, A., Madden, S. (eds.) DCOSS 2007. LNCS, vol. 4549, pp. 124–141. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  27. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing lp. J. ACM 50(6), 795–824 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gehweiler, J., Lammersen, C., Sohler, C.: A distributed O(1)-approximation algorithm for the uniform facility location problem. In: SPAA 2006: Proceedings of the eighteenth annual ACM symposium on Parallelism in algorithms and architectures, pp. 237–243. ACM, New York (2006)

    Chapter  Google Scholar 

  29. Schneider, J., Wattenhofer, R.: A Log-Star Distributed Maximal Independent Set Algorithm for growth-Bounded Graphs. In: 27th ACM Symposium on Principles of Distributed Computing (PODC), Toronto, Canada (2008)

    Google Scholar 

  30. Pemmaraju, S., Pirwani, I.: Good quality virtual realization of unit ball graphs. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp. 311–322. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  31. Pandit, S., Pemmaraju, S.: Finding facilities fast. Full Paper (2009), http://cs.uiowa.edu/~spandit/research/icdcn2009.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pandit, S., Pemmaraju, S.V. (2008). Finding Facilities Fast. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds) Distributed Computing and Networking. ICDCN 2009. Lecture Notes in Computer Science, vol 5408. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92295-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92295-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92294-0

  • Online ISBN: 978-3-540-92295-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics