Skip to main content

Robustness to Code and Data Deletion in Autocatalytic Quines

  • Chapter
Transactions on Computational Systems Biology X

Part of the book series: Lecture Notes in Computer Science ((TCSB,volume 5410))

Abstract

Software systems nowadays are becoming increasingly complex and vulnerable to all sorts of failures and attacks. There is a rising need for robust self-repairing systems able to restore full functionality in the face of internal and external perturbations, including those that affect their own code base. However, it is difficult to achieve code self-repair with conventional programming models.

We propose and demonstrate a solution to this problem based on self-replicating programs in an artificial chemistry. In this model, execution proceeds by chemical reactions that modify virtual molecules carrying code and data. Self-repair is achieved by what we call autocatalytic quines: programs that permanently reproduce their own code base. The concentration of instructions reflects the health of the system, and is kept stable by the instructions themselves. We show how the chemistry of such programs enables them to withstand arbitrary amounts of random code and data deletion, without affecting the results of their computations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baumann, R.C.: Soft errors in advanced semiconductor devices – part 1: the three radiation sources. IEEE Transactions on Device and Materials Reliability 1(1), 17–22 (2001)

    Article  Google Scholar 

  2. Anckaert, B., Madou, M., de Bosschere, K.: A model for self-modifying code. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 232–248. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  3. Calude, C.S., Păun, G.: Computing with Cells and Atoms: An Introduction to Quantum, DNA and Membrane Computing. Taylor & Francis, Abington (2001)

    MATH  Google Scholar 

  4. Dittrich, P.: Chemical Computing. In: Banâtre, J.-P., Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 19–32. Springer, Heidelberg (2005)

    Google Scholar 

  5. Dittrich, P., Ziegler, J., Banzhaf, W.: Artificial Chemistries – A Review. Artificial Life 7(3), 225–275 (2001)

    Article  Google Scholar 

  6. Banzhaf, W., Lasarczyk, C.: Genetic Programming of an Algorithmic Chemistry. In: O’Reilly, et al. (eds.) Genetic Programming Theory and Practice II, vol. 8, pp. 175–190. Kluwer/Springer (2004)

    Google Scholar 

  7. Deckard, A., Sauro, H.M.: Preliminary Studies on the In Silico Evolution of Biochemical Networks. ChemBioChem 5(10), 1423–1431 (2004)

    Article  Google Scholar 

  8. Leier, A., Kuo, P.D., Banzhaf, W., Burrage, K.: Evolving Noisy Oscillatory Dynamics in Genetic Regulatory Networks. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A. (eds.) EuroGP 2006. LNCS, vol. 3905, pp. 290–299. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Banâtre, J.P., Fradet, P., Radenac, Y.: A Generalized Higher-Order Chemical Computation Model with Infinite and Hybrid Multisets. In: 1st International Workshop on New Developments in Computational Models (DCM 2005). ENTCS, pp. 5–14. Elsevier, Amsterdam (to appear)

    Google Scholar 

  11. Tschudin, C.: Fraglets - a metabolistic execution model for communication protocols. In: Proc. 2nd Annual Symposium on Autonomous Intelligent Networks and Systems (AINS), Menlo Park, USA (2003)

    Google Scholar 

  12. Yamamoto, L., Schreckling, D., Meyer, T.: Self-Replicating and Self-Modifying Programs in Fraglets. In: Proc. 2nd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2007), Budapest, Hungary (2007)

    Google Scholar 

  13. von Neumann, J.: Theory of Self-Reproducing Automata. University of Illinois Press, Champaign (1966)

    Google Scholar 

  14. Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Perez-Uribe, A., Stauffer, A.: A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems. IEEE Transactions on Evolutionary Computation 1(1) (1997)

    Google Scholar 

  15. Freitas Jr., R.A., Merkle, R.C.: Kinematic Self-Replicating Machines. Landes Bioscience, Georgetown (2004)

    Google Scholar 

  16. Sipper, M.: Fifty years of research on self-replication: an overview. Artificial Life 4(3), 237–257 (1998)

    Article  Google Scholar 

  17. Langton, C.G.: Self-reproduction in cellular automata. Physica D 10D(1-2), 135–144 (1984)

    Article  Google Scholar 

  18. Perrier, J.Y., Sipper, M., Zahnd, J.: Toward a Viable, Self-Reproducing Universal Computer. Physica D 97, 335–352 (1996)

    Article  MathSciNet  Google Scholar 

  19. Kleene, S.: On notation for ordinal numbers. The Journal of Symbolic Logic 3, 150–155 (1938)

    Article  MATH  Google Scholar 

  20. Thompson, G.P.: The quine page (1999), http://www.nyx.net/~gthompso/quine.htm

  21. Dittrich, P., di Fenizio, P.S.: Chemical organization theory: towards a theory of constructive dynamical systems. Bulletin of Mathematical Biology 69(4), 1199–1231 (2005)

    Article  Google Scholar 

  22. Fontana, W., Buss, L.W.: The Arrival of the Fittest: Toward a Theory of Biological Organization. Bulletin of Mathematical Biology 56, 1–64 (1994)

    MATH  Google Scholar 

  23. Dittrich, P., Banzhaf, W.: Self-Evolution in a Constructive Binary String System. Artificial Life 4(2), 203–220 (1998)

    Article  Google Scholar 

  24. Hutton, T.J.: Evolvable Self-Reproducing Cells in a Two-Dimensional Artificial Chemistry. Artificial Life 13(1), 11–30 (2007)

    Article  MathSciNet  Google Scholar 

  25. Teuscher, C.: From membranes to systems: self-configuration and self-replication in membrane systems. BioSystems 87(2-3), 101–110 (2007); The Sixth International Workshop on Information Processing in Cells and Tissues (IPCAT 2005), York, UK (2005)

    Article  Google Scholar 

  26. Holland, J.: Adaptation in Natural and Artificial Systems, 1st edn. MIT Press, Cambridge (1992)

    Google Scholar 

  27. Decraene, J., Mitchell, G.G., McMullin, B., Kelly, C.: The Holland Broadcast Language and the Modeling of Biochemical Networks. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 361–370. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  28. Tominaga, K., Watanabe, T., Kobayashi, K., Nakamura, M., Kishi, K., Kazuno, M.: Modeling Molecular Computing Systems by an Artificial Chemistry—Its Expressive Power and Application. Artificial Life 13(3), 223–247 (2007)

    Article  Google Scholar 

  29. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  30. Bagley, R.J., Farmer, J.D., Kauffman, S.A., Packard, N.H., Perelson, A.S., Stadnyk, I.M.: Modeling adaptive biological systems. Biosystems 23, 113–138 (1989)

    Article  Google Scholar 

  31. Farmer, J.D., Kauffman, S.A., Packard, N.H.: Autocatalytic replication of polymers. Physica D 2(1-3), 50–67 (1986)

    Article  MathSciNet  Google Scholar 

  32. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, Oxford (1993)

    Google Scholar 

  33. Mossel, E., Steel, M.: Random biochemical networks: the probability of self-sustaining autocatalysis. Journal of Theoretical Biology 233(3), 327–336 (2005)

    Article  MathSciNet  Google Scholar 

  34. di Fenizio, P.S., Banzhaf, W.: A less abstract artificial chemistry. In: Bedau, M.A., Mccaskill, J.S., Packard, N.H., Rasmusseen, S. (eds.) Artificial Life VII, Cambridge, Massachusetts 02142, pp. 49–53. MIT Press, Cambridge (2000)

    Google Scholar 

  35. Stadler, P.F., Fontana, W., Miller, J.H.: Random catalytic reaction networks. Physica D 63(3-4), 378–392 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  36. Hoglund, G., Mcgraw, G.: Exploiting Software: How to Break Code. Addison-Wesley Professional, Reading (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meyer, T., Schreckling, D., Tschudin, C., Yamamoto, L. (2008). Robustness to Code and Data Deletion in Autocatalytic Quines. In: Priami, C., Dressler, F., Akan, O.B., Ngom, A. (eds) Transactions on Computational Systems Biology X. Lecture Notes in Computer Science(), vol 5410. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92273-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92273-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92272-8

  • Online ISBN: 978-3-540-92273-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics