Modeling Evolving Innovation Networks

  • Michael D. Köonig
  • Stefano Battiston
  • Frank Schweitzer
Chapter
Part of the Understanding Complex Systems book series (UCS)

Economists widely agree on technological change and innovation being the main components of economic growth [Aghion and Howitt 1998, Tirole 1988]. In the absence of ongoing technological improvements, economic growth can hardly be maintained [Barro and Sala-i Martin 2004]. The close link between innovation and economic performance has become generally accepted. Following this insight, in recent years of economic growth, OECD countries have fostered investments in science, technology, and innovation[OECD 2006].

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghion, P., Howitt, P. (1998). Endogenous Growth Theory. Cambridge, MA MIT Press.Google Scholar
  2. Ahuja, Magnanti; Orlin (1993). Network Flows: Theory, Algorithms, and Applications. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  3. Allen, R. C. (1983). Collective invention. Journal of Economic Behavior&Organization 4(1), 1–24.Google Scholar
  4. Amaral, L. A. N., Cizeau, P., Gopikrishnan, P., Liu, Y., Meyer, M., Peng, C.-K., Stanley, H. E. (1999). Econophysics: Can statistical physics contribute to the science of economics? Computer Physics Communications, 121(122), 145–152.Google Scholar
  5. Amaral, L., Gopikrishnan, P., Matia, K., Plerou, V., Stanley, H. (2001). Application of statistical physics methods and concepts to the study of science&technology systems. Scientometrics 51, 9–36.Google Scholar
  6. Antonelli, C. (1996). Localized knowledge percolation processes and information networks. Journal of Evolutionary Economics 6(3), 281–295.Google Scholar
  7. Arora, A., Fosfuri, A., Gambardella, A. (2004). Markets for Technology: The Economics of Innovation and Corporate Strategy. Cambridge, MA: MIT Press.Google Scholar
  8. Arrow, K. J. (1962). Economic welfare and the allocation of resources for innovation. The Rate and Direction of Inventive Activity, National Bureau of Economic Research, Princeton: Princeton U. Press. pp. 609–625.Google Scholar
  9. Axelrod, R., Tesfatsion, L. S. (2006). A Guide for Newcomers to Agent-Based Modeling in the Social Sciences. Staff General Research Papers 12515, Iowa State University, Department of Economics.Google Scholar
  10. Bak, P., Sneppen, K. (1993). Punctuated equilibrium and criticality in a simple model of evolution. Physical Review Letters 71(24), 4083–4086.Google Scholar
  11. Bala, V., Goyal, S. (2000). A non-cooperative model of network formation. Econometrica 68(5), s1181–1230.Google Scholar
  12. Baldry, R., Ghosal, S. (2005). Irreducible economies and strongly connected graphs. Journal of Mathematical Economics 41(8), 937–956.Google Scholar
  13. Ballester, C., Calvo-Armengol, A., Zenou, Y. (2006). Who’s who in networks. Wanted: The key player. Econometrica 74(5), 1403–1417.Google Scholar
  14. Barro, R. J., Sala-i Martin, X. (2004). Economic Growth. Cambridge, MA: MIT Press.Google Scholar
  15. Battiston, S. (2003). Dynamics and Evolution of Complex Networks in Socio-Economical Systems. Ph.D. thesis, Ecole Normale Superieure, Ecole Doctorale de Paris 7.Google Scholar
  16. Bollobas, B. (1985). Random Graphs. Cambridge, NY: 2nd edn. Cambridge University Press.Google Scholar
  17. Bolton, G. E., Katok, E., Ockenfels, A. (2005). Cooperation among strangers with limited information about reputation. Journal of Public Economics 89, 1457–1468.Google Scholar
  18. Bolton, G. E., Ockenfels, A. (2000). ERC: A Theory of Equity, Reciprocity, and Competition. The American Economic Review 90(1), 166–193.CrossRefGoogle Scholar
  19. Boyd, S. (2006). Linear Dynamical Systems. Lecture Notes, Stanford University.Google Scholar
  20. Braun, M. (1993). Differential Equations and Their Applications. Texts in Applied Mathematics. Ney York 4th edn. Springer.Google Scholar
  21. Bresnahan, T. F., Trajtenberg, M. (1995). General purpose technologies “Engines of growth”? Journal of Econometrics 65(1), 83–108.Google Scholar
  22. Carayol, N., Roux, P. (2003). Self-Organizing Innovation Networks: When do Small Worlds Emerge? Working Papers of GRES – Cahiers du GRES 2003–8, Groupement de Recherches Economiques et Sociales.Google Scholar
  23. Carayol, N., Roux, P. (2005). A Strategic Model of Complex Networks Formation. Tech. rep., Universite Louis Pasteur, Strasbourg and Universite Paris Sud.Google Scholar
  24. Casella, G., Berger, R. L. (2001). Statistical Inference. Pacific Grove, CA: Duxbury Press.Google Scholar
  25. Cassiman, B., Veugelers, R. (2002). R&D cooperation and spillovers: Some empirical evidence from belgium. The American Economic Review 92(4), 1169–1184.Google Scholar
  26. Cohen, W. (1995). Empirical Studies of Technological Activity. Handbook of the Economics of Innovation and Technological Change. Oxford: Blackwell Publishers Ltd.Google Scholar
  27. Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C. (2001). Introduction to Algorithms. Cambridge, MA: MIT Press.Google Scholar
  28. Costa, L. F., Rodrigues, F. A., Travieso, G., Boas, P. V. (2007). Characterization of complex networks: A Survey of measurements, Arxiv preprint cond-mat/0505185.Google Scholar
  29. Cowan, R., Jonard, N. (2004). Network structure and the diffusion of knowledge. Journal of Economic Dynamics and Control 28(8), 1557–1575.Google Scholar
  30. Cowan, R., Jonard, N., Ozman, M. (2004). Knowledge dynamics in a network industry. Technological Forecasting and Social Change 71(5), 469–484.Google Scholar
  31. Dickhaut, J., Rustichini, A. (2001). Investment Game. Tech. rep. Forthcoming in the Encyclopedia of Cognitive Sciences.Edited by Nature, available at the website:http://www.econ.umn.edu/arust/InvestmentGame\_9\_(1).Pdf
  32. Dieckmann, A. (2004). The power of reciprocity: Fairness, reciprocity, and stakes in variants of the dictator game. Journal of Conflict Resolution 48(4), 487–505.Google Scholar
  33. Durlauf, S. N. (1999). How Can Statistical Mechanics Contribute to Social Science? Tech. rep., Wisconsin Madison – Social Systems.Google Scholar
  34. Durrett, R. A. (2004). Probability. Theory and Examples. Thomson Learning.Google Scholar
  35. Eigen, M., Schuster, P. (1979). The Hypercycle: A Principle of Natural Self-Organization. Berlin. Springer.Google Scholar
  36. Farmer, J. D., Smith, E., Shubik, M. (2005). Economics: The next physical science? Arxiv preprint physics/0506086.Google Scholar
  37. Fehr, E., Fischbacher, U. (2003). The nature of human altruism. Nature 425, 785–791.Google Scholar
  38. Fehr, E., Schmidt, K. M. (1999). A theory of fairness, competition and Cooperation. The Quarterly Journal of Economics, 111, 817–868.Google Scholar
  39. Foray, D. (2004). The Economics of Knowledge. Cambridge, MA: MIT Press.Google Scholar
  40. Frenken, K. (2006). Technological innovation and complexity theory. Economics of Innovation and New Technology 15(2), 137–155.Google Scholar
  41. Gabszewicz, J. (2000). Strategic Interaction and Markets. Center for Operations Research and Econometrics (CORE), Catholic University of Louvain: Oxford University Press.Google Scholar
  42. Gallegati, M., Kirman, A. P. (eds.) (1999). Beyond the Representative Agent. Cheltenham, GL: Edward Elgar Publishing.Google Scholar
  43. Gerosky, P. (1995). Handbook of the Economics of Innovation and Technological Change. Oxford: Blackwell Publishers Ltd., chap. Markets for technology: knowledge, innovation and appropriability.Google Scholar
  44. Gigerenzer, G., Selten, R. (eds.) (2002). Bounded Rationality: The Adaptive Toolbox (Dahlem Workshop Reports). Cambridge, MA: MIT Press.Google Scholar
  45. Godsil, C. D., Royle, G. F. (2001). Algebraic Graph Theory. Springer.Google Scholar
  46. Goyal, S. (2007). Connections: An Introduction to the Economics of Networks. Princeton: Princeton University Press.Google Scholar
  47. Gross, T., Blasius, G. (2007). Adaptive Coevolutionary Networks – A Review. Eprint arXiv: 0709.1858.Google Scholar
  48. Hagedoorn, J., Cloodt, M., Roijakkers, N. (2006). Patterns In Inter-Firm R&D Networks in the Global Computer Industry: A Historical Analysis Of Major Developments During the Period 1970–1999. Paper presented at SPRU 40th Anniversary Conference – The Future of Science, Technology and Innovation Policy, SPRU, Brighton, East Sussex, UK.Google Scholar
  49. Hagedoorn, J., Link, A. N., Vonortas, N. S. (2000). Research partnerships. Research Policy 29(4–5), 567–586.Google Scholar
  50. Haller, H., Kamphorst, J., Sarangi, S. (2007). (Non-)existence and scope of nash networks. Economic Theory 31, 597–604.Google Scholar
  51. Haller, H., Sarangi, S. (2005). Nash networks with heterogeneous links. Mathematical Social Sciences 50, 181–201.Google Scholar
  52. Hanaki, N., Nakajima, R., Ogura, Y. (2007). The Dynamics of R&D Collaboration in the IT Industry. Working Paper.Google Scholar
  53. Hausman, D. M. (2003). Inexact and Separate Science of Economics. Cambridge: Cambridge University Press.Google Scholar
  54. Hofbauer, J., Sigmund, K. (1998). Evolutionary Games and Population Dynamics. Cambridge: Cambridge University Press.Google Scholar
  55. Horn, R. A., Johnson, C. R. (1990). Matrix Analysis. Cambridge: Cambridge University Press.Google Scholar
  56. Huberman, B., Glance, N. (1994). Beliefs and cooperation. Arxiv eprint arXiv: adap-org/9405001.Google Scholar
  57. Jackson, M. O. (2003). A Survey of Models of Network Formation: Stability and Efficiency. Working Papers 1161, California Institute of Technology, Division of the Humanities and Social Sciences.Google Scholar
  58. Jackson, M. O. (2006). Cambridge University Press. The Economics of Social Networks. Advances in Economics and Econometrics: Theory and Applications, Ninth World Congress. New York: vol. IGoogle Scholar
  59. Jackson, M. (2008). Social and Economic Networks. Princeton: Princeton University Press. Forthcoming.Google Scholar
  60. Jackson, M. O., Watts, A. (2002). The Evolution of social and economic networks. Journal of Economic Theory 106(2), 265–295.Google Scholar
  61. Jackson, M. O., Wolinsky, A. (1996). A strategic model of social and economic networks. Journal of Economic Theory 71(1), 44–74.Google Scholar
  62. Jain, S., Krishna, S. (1998a). Autocatalytic sets and the growth of complexity in an evolutionary model. Physical Review Letters 81(25), 5684–5687.Google Scholar
  63. Jain, S., Krishna, S. (1998b). Emergence and growth of complex networks in adaptive systems. E-print adap-org/9810005.Google Scholar
  64. Jain, S., Krishna, S. (2001). A model for the emergence of cooperation, interdependence, and structure in evolving networks. Proceedings of the National Academy of Sciences 98(2), 543–547.Google Scholar
  65. Jain, S., Krishna, S. (2002). Graph theory and the evolution of autocatalytic networks. Handbook of Graphs and Networks. Berlin: John Wiley and VCH.Google Scholar
  66. Karshenas, M., Stoneman, P. (1995). Technological Diffusion. Handbook of the Economics of Innovation and Technological Change. Oxford: Blackwell Publishers Ltd.Google Scholar
  67. Khalil, K. H. (1995). Nonlinear Systems. Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  68. Kim, C., Wong, K.-C. (2007). Network formation and stable equilibrium. Journal of Economic Theory 133, 536–549.Google Scholar
  69. Kirman, A. (1997). The economy as an evolving network. Journal of Evolutionary Economics 7(4), 339–353.Google Scholar
  70. König, M. D., Battiston, S., Napoletano, M., Schweitzer, F., (2008a). Efficiency and stability of dynamic innovation networks, CER-ETH Working Paper No. 08/95, ETH Zurich.Google Scholar
  71. König, M. D., Battiston, S., Napoletano, M., Schweitzer, F. (2008b). On algebraic graph theory and the dynamics of innovation networks. Networks and Heterogeneous Media, 3(2), 201–219.Google Scholar
  72. Krishna, S. (2003). Formation and Destruction of Autocatalytic Sets in an Evolving Network Model. Ph.D. thesis, Centre for Theoretical Studies, Indian Institue of Science. E-print arxiv:nlin.AO/0403050 v1.Google Scholar
  73. Lane, D. (2005). A Theory Based Dynamical Model of Innovation Processes. Tech. rep., Department of Political Economy, University of Modena.Google Scholar
  74. Lane, D., Maxfield, R. (1997). Foresight, Complexity and Strategy. Chapter in book: Economy As an Evolving Complex System II, Westview Press.Google Scholar
  75. Lerner, J., Tirole, J. (2002). Some simple economics of open source. The Journal of Industrial Economics L(2), 197–234.Google Scholar
  76. Mas-Colell, A., Whinston, M. D., (1995). Microeconomic theory. New York: Oxford University Press.Google Scholar
  77. Maxfield, R. R. (1994). General Equilibrium and the theory of directed graphs. Journal of Mathematical Economics 27, 23–51.Google Scholar
  78. Nelson, R. (1959). The simple economics of basic research. Journal of Political Economy 67, 297–306.Google Scholar
  79. Newman, M. (2003). The structure and function of complex networks. SIAM Review 45(2), 167–256.Google Scholar
  80. Nowak, M., Sigmund, K. (1998). Evolution of indirect reciprocity by image scoring. Nature 393, 573–577.Google Scholar
  81. Nowak, M., Sigmund, K. (2005). Evolution of indirect reciprocity. Nature 437, 1291–1298.Google Scholar
  82. OECD (2006). OECD Science, Technology and Industry Outlook 2006. OECD Publishing.Google Scholar
  83. Padgett, J. F. (1996). The Emergence of Simple Ecologies of Skill: A Hypercycle Approach to Economic Organization. Working Papers 96-08-053, Santa Fe Institute.Google Scholar
  84. Padgett, J. F., Lee, D., Collier, N. (2003). Economic production as chemistry. Industrial Corporate Change 12(4), 843–877.Google Scholar
  85. Powell, W., Grodal, S. (2006). Oxford Handbook of Innovation. USA: Oxford University Press. chap. Networks of Innovators.Google Scholar
  86. Ricottilli, M. (2005). Firms and Network Formation Through the Transmission of Heterogeneous Knowledge. Tech. rep., Department of Economics, University of Bologna.Google Scholar
  87. Ricottilli, M. (2006). Constraints and Freedom of Action: A Fitness Trade-Off.Tech. rep., Department of Economics, University of Bologna.Google Scholar
  88. Rivkin, J. W. (2000). Imitation of complex strategies. Management Science 46(6), 824–844.Google Scholar
  89. Rosenblatt, D. (1957). On linear models and the graphs of minkowski-leontief matrices. Econometrica 25, 325–338.Google Scholar
  90. Saurabh, A., Cowan, R. (2004). The Growth of Knowledge and Complexity in an Evolving Network Model of Technological Innovation. Tech. rep., UNU-INTECH and MERIT, University of Maastricht, The Netherlands. Paper presented at “Organisations, Innovation and Complexity: New Perspectives on the Knowledge Economy”, 9th–10th September 2004, CRIC, University of Manchester, Manchester, England, UK.Google Scholar
  91. Scotchmer, S. (2004). Innovation and Incentives. Cambridge, MA: MIT Press.Google Scholar
  92. Seufert, A., Schweitzer, F. (2007). Aggregate behavior in an evolutionary network model. International Journal of Modern Physics C 18(10) 1659–1674.Google Scholar
  93. Sorenson, O., Rivkin, J. W., Fleming, L. (2006). Complexity, networks and knowledge flow. Research Policy 35(7). 994–1017.Google Scholar
  94. Stadler, P., Schuster, P. (1996). Permanence of sparse autocatalytic networks. Mathematical Biosciences, 131(2), 111–133.Google Scholar
  95. Steger, A. (ed.) (2001). Diskrete Strukturen 2.: Kombinatorik, Graphentheorie, Algebra. Berlin: Springer Verlag.Google Scholar
  96. Steger, A., Schickinger, T. (eds.) (2001). Diskrete Strukturen 1.: Kombinatorik, Graphentheorie, Algebra. Berlin: Springer Verlag.Google Scholar
  97. Tirole, J. (1988). The Theory of Industrial Orgnization. Cambridge, MA: MIT Press.Google Scholar
  98. Varian, H. R. (1996). Intermediate Microeconomics: A Modern Approach. New York: WW Norton.Google Scholar
  99. Vega-Redondo, F. (2007). Complex Social Networks. Series: Econometric Society Monographs. Cambridge, MA: Cambridge University Press.Google Scholar
  100. Von Hippel, E. (1987). Cooperation between Rivals: Informal know-how trading. Research Policy 16, 291–302.Google Scholar
  101. Von Hippel, E., Von Krogh, G. (2003). open source software and the private-collective innovation model: Issues for organization science. Organization Science 14(2), 209–223.Google Scholar
  102. Watts, D. J., Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature 393, 440–442.Google Scholar
  103. Weitzman, M. L. (1998). Recombinant growth. The Quarterly Journal of conomics 113(2), 331–360.Google Scholar
  104. West, Douglas, B. (2001). Introduction to Graph Theory. Upper Saddle River, NJ: Prentice-Hall. 2nd edn.Google Scholar
  105. Wilson, R. (1975). Informational economics of scale. Bell Journal of Economics 6, 184–195.Google Scholar
  106. Zenou, Y. (2006). Course on networks: Theory and applications. Lecture notes.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Michael D. Köonig
    • 1
  • Stefano Battiston
  • Frank Schweitzer
  1. 1.Chair of Systems DesignETH ZurichSwitzerland

Personalised recommendations