The Marriage of Cryptography and Watermarking — Beneficial and Challenging for Secure Watermarking and Detection

  • Ahmad-Reza Sadeghi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5041)


Multimedia applications deploy various cryptographic and watermarking techniques to maintain security. In this context, we survey the main work on two promising approaches for the secure embedding and detection of a watermark in an untrusted environment, and we point out some associated challenges.

In the former case we consider Zero-Knowledge Watermark Detection (ZKWMD) that allows a legitimate party to prove to a potentially untrusted verifying party that a watermark is detectable in certain content, without jeopardizing the security of the watermark. ZKWMD protocols are useful primitives for direct proofs of authorship (i.e., without online involvement of a trusted third party) and dispute resolving in distributed systems. In the latter case we consider a Chameleon-like stream cipher that achieves simultaneous decryption and fingerprinting of data, and can serve as the second line of defense for tracing illegal distribution of broadcast messages, termed as Fingercasting.


Proof System Watermark Scheme Stream Cipher Commitment Scheme Common Input 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    4C Entity, LLC. CPPM specification—introduction and common cryptographic elements. Specification Revision 1.0, January 17 (2003),
  2. 2.
    AACS Licensing Administrator. Advanced access content system (AACS): Introduction and common cryptographic elements. Specification Revision 0.90, April 14 (2005),
  3. 3.
    Adelsbach, A., Huber, U., Sadeghi, A.-R.: Fingercasting—joint fingerprinting and decryption of broadcast messages. In: Batten, L.M., Safavi-Naini, R. (eds.) ACISP 2006. LNCS, vol. 4058, pp. 136–147. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Adelsbach, A., Katzenbeisser, S., Sadeghi, A.-R.: Watermark detection with zero-knowledge disclosure. ACM Multimedia Systems Journal, Special Issue on Multimedia Security (2003)Google Scholar
  5. 5.
    Adelsbach, A., Katzenbeisser, S., Sadeghi, A.-R.: A computational model for watermark robustness. In: Camenisch, J., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 145–160. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Adelsbach, A., Rohe, M., Sadeghi, A.-R.: Overcoming the obstacles of zero-knowledge watermark detection. In: Proceedings of ACM Multimedia Security Workshop, pp. 46–55 (2004)Google Scholar
  7. 7.
    Adelsbach, A., Rohe, M., Sadeghi, A.-R.: Towards multilateral secure digital rights distribution infrastructures. In: ACM DRM Workshop 2005 (2005)Google Scholar
  8. 8.
    Adelsbach, A., Sadeghi, A.-R.: Zero-knowledge watermark detection and proof of ownership. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 273–288. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  9. 9.
    Adelsbach, A., Sadeghi, A.-R.: Advanced techniques for dispute resolving and authorship proofs on digital works. In: Proceedings of SPIE Security and Watermarking of Multimedia Contents V, vol. 5020 (2003)Google Scholar
  10. 10.
    Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed Systems, 1st edn. John Wiley, Chichester (2001)Google Scholar
  11. 11.
    Anderson, R.J., Kuhn, M.: Tamper resistance—a cautionary note. In: Tygar, D. (ed.) USENIX Electronic Commerce 1996, pp. 1–11. USENIX (1996)Google Scholar
  12. 12.
    Anderson, R.J., Manifavas, C.: Chameleon—a new kind of stream cipher. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 107–113. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  13. 13.
    Boneh, D., Shaw, J.: Collusion-secure fingerprinting for digital data. IEEE Transactions on Information Theory 44(5), 1897–1905 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Brassard, G., Chaum, D., Crépeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37(2), 156–189 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Briscoe, B., Fairman, I.: Nark: Receiver-based multicast non-repudiation and key management. In: ACM EC 1999, pp. 22–30. ACM Press, New York (1999)Google Scholar
  17. 17.
    Brown, I., Perkins, C., Crowcroft, J.: Watercasting: Distributed watermarking of multicast media. In: Rizzo, L., Fdida, S. (eds.) NGC 1999. LNCS, vol. 1736, pp. 286–300. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  18. 18.
    Celik, M.U., Lemma, A.N., Katzenbeisser, S., van der Veen, M.: Secure embedding of spread spectrum watermarks using look-up-tables. In: ICASSP 2007 [43] (2007)Google Scholar
  19. 19.
    Chor, B., Fiat, A., Naor, M.: Tracing traitors. In: Desmedt, Y. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 257–270. Springer, Heidelberg (1994)Google Scholar
  20. 20.
    Cox, I., Kilian, J., Leighton, T., Shamoon, T.: A secure, robust watermark for multimedia. In: Anderson, R. (ed.) IH 1996. LNCS, vol. 1174, pp. 175–190. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  21. 21.
    Cox, I., Miller, M.L., Bloom, J.A.: Digital Watermarking. Morgan Kaufmann, San Francisco (2002)Google Scholar
  22. 22.
    Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Transactions on Image Processing 6(12), 1673–1687 (1997)CrossRefGoogle Scholar
  23. 23.
    Cox, I.J., Linnartz, J.-P.M.G.: Some general methods for tampering with watermarks. IEEE Journal on Selected Areas in Communications 16(4), 587–593 (1998)CrossRefGoogle Scholar
  24. 24.
    Craver, S.: Zero knowledge watermark detection. In: Pfitzmann (ed.) [59], pp. 101–116.Google Scholar
  25. 25.
    Craver, S., Katzenbeisser, S.: Copyright protection protocols based on asymmetric watermarking: The ticket concept. In: Communications and Multimedia Security Issues of the New Century, pp. 159–170. Kluwer Academic Publishers, Dordrecht (2001)CrossRefGoogle Scholar
  26. 26.
    Craver, S., Katzenbeisser, S.: Security analysis of public-key watermarking schemes. In: Proceedings of SPIE, Mathematics of Data/Image Coding, Compression and Encryption IV, with Applications, vol. 4475, pp. 172–182 (2001)Google Scholar
  27. 27.
    Craver, S., Liu, B., Wolf, W.: An implementation of, and attacks on, zero-knowledge watermarking. In: Fridrich, J.J. (ed.) IH 2004. LNCS, vol. 3200, pp. 1–12. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  28. 28.
    Damgård, I.: Commitment schemes and zero-knowledge protocols. In: Damgård, I.B. (ed.) EEF School 1998. LNCS, vol. 1561, pp. 63–86. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  29. 29.
    Damgård, I., Fujisaki, E.: A statistically-hiding integer commitment scheme based on groups with hidden order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  30. 30.
    Eggers, J.J., Su, J.K., Girod, B.: Asymmetric watermarking schemes. In: Sicherheit in Netzen und Medienströmen, September 2000, Springer Reihe, Informatik Aktuell (2000)Google Scholar
  31. 31.
    Eggers, J.J., Su, J.K., Girod, B.: Public key watermarking by eigenvectors of linear transforms. In: Proceedings of the European Signal Processing Conference (2000)Google Scholar
  32. 32.
    Ergün, F., Kilian, J., Kumar, R.: A note on the limits of collusion-resistant watermarks. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 140–149. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  33. 33.
    Ferguson, N., Schneier, B., Wagner, D.: Security weaknesses in a randomized stream cipher. In: Dawson, E., Clark, A., Boyd, C. (eds.) ACISP 2000. LNCS, vol. 1841, pp. 234–241. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  34. 34.
    Fiat, A., Naor, M.: Broadcast encryption. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 480–491. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  35. 35.
    Fujisaki, E., Okamoto, E.: Statistical zero knowledge protocols to prove modular polynomial relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  36. 36.
    Fujisaki, E., Okamoto, T.: Statistical zero-knowledge protocols to prove modular relations. IEICE Transactions on Fundamentals, E82-A(1):81–92 (Jan 1999)Google Scholar
  37. 37.
    Furon, T., Duhamel, P.: An asymmetric public detection watermarking technique. In: Pfitzmann [59], pp. 88–100Google Scholar
  38. 38.
    Goldreich, O.: Foundations of Cryptography, volume Basic Tools. Cambridge University Press, Cambridge (2001)CrossRefzbMATHGoogle Scholar
  39. 39.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(3), 690–728 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. In: Proceedings of the 17th Annual Symposium on Theory of Computing (STOC), Providence, RI, USA, May 1985, pp. 291–304. ACM Press, New York (1985)Google Scholar
  41. 41.
    Gopalakrishnan, K., Memon, N., Vora, P.: Protocols for watermark verification. In: Multimedia and Security, Workshop at ACM Multimedia, pp. 91–94 (1999)Google Scholar
  42. 42.
    Halevy, D., Shamir, A.: The LSD broadcast encryption scheme. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 47–60. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  43. 43.
    IEEE International Conference on Acoustics, Speech and Signal Processing—ICASSP 2007, Honolulu, Hawaii, USA, April 15–20, 2007. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  44. 44.
    Jho, N.-S., Hwang, J.Y., Cheon, J.H., Kim, M.-H., Lee, D.H., Yoo, E.S.: One-way chain based broadcast encryption schemes. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 559–574. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  45. 45.
    Katzenbeisser, S.: Computational security models for digital watermarks (April 2005)Google Scholar
  46. 46.
    Katzenbeisser, S., Skoric, B., Celik, M., Sadeghi, A.-R.: Combining tardos fingerprinting codes and fingercasting. In: Information Hiding conference 2007 (2007)Google Scholar
  47. 47.
    Kilian, J., Leighton, F.T., Matheson, L.R., Shamoon, T.G., Tarjan, R.E., Zane, F.: Resistance of digital watermarks to collusive attacks. Technical Report TR-585-98, Princeton University, Department of Computer Science, July 27 (1998),
  48. 48.
    Kundur, D., Karthik, K.: Video fingerprinting and encryption principles for digital rights management. Proceedings of the IEEE 92(6), 918–932 (2004)CrossRefGoogle Scholar
  49. 49.
    Linnartz, J.-P.M.G., van Dijk, M.: Analysis of the sensitivity attack against electronic watermarks in images. In: Aucsmith, D. (ed.) IH 1998. LNCS, vol. 1525, pp. 258–272. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  50. 50.
    Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  51. 51.
    Liu, Y., Gao, W., Yao, H., Song, Y.: Secure watermark verification scheme. In: Chen, Y.-C., Chang, L.-W., Hsu, C.-T. (eds.) PCM 2002. LNCS, vol. 2532, pp. 477–484. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  52. 52.
    Liu, Y., Yang, X., Yao, H., Huang, T., Gao, W.: Watermark detection schemes with high security. In: ITCC (2), pp. 113–117. IEEE Computer Society Press, Los Alamitos (2005)Google Scholar
  53. 53.
    Luh, W., Kundur, D.: New paradigms for effective multicasting and fingerprinting of entertainment media. IEEE Communications Magazine 43(5), 77–84 (2005)CrossRefGoogle Scholar
  54. 54.
    Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of Cryptology 5(1), 53–66 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  55. 55.
    Maurer, U.M.: A provably-secure strongly-randomized cipher. In: Damgard, I. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 361–373. Springer, Heidelberg (1990)Google Scholar
  56. 56.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and tracing schemes for stateless receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  57. 57.
    Naor, M., Pinkas, B.: Threshold traitor tracing. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 502–517. Springer (1998)Google Scholar
  58. 58.
    Parviainen, R., Parnes, P.: Large scale distributed watermarking of multicast media through encryption. In: Steinmetz, R., Dittmann, J., Steinebach, M. (eds.) Communications and Multimedia Security (CMS 2001). IFIP Conference Proceedings, vol. 192, pp. 149–158. International Federation for Information Processing, Communications and Multimedia Security (IFIP), Kluwer (2001)Google Scholar
  59. 59.
    Pfitzmann, A. (ed.): IH 1999. LNCS, vol. 1768. Springer, Heidelberg (2000)Google Scholar
  60. 60.
    Tardos., G.: Optimal probabilistic fingerprint codes. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC), pp. 116–125 (2003)Google Scholar
  61. 61.
    D. S. Touretzky. Gallery of CSS descramblers. Webpage, Computer Science Department of Carnegie Mellon University (2000) (November 17, 2005),
  62. 62.
    van Schyndel, R.G., Tirkel, A.Z., Svalbe, I.D.: Key independent watermark detection. In: Proceedings of the IEEE International Conference on Multimedia Computing and Systems, vol. 1 (1999)Google Scholar
  63. 63.
    Zhao, X., Dai, Y., Feng, D.: A generalized method for constructing and proving zero-knowledge watermark proof systems. In: Cox, I.J., Kalker, T., Lee, H.-K. (eds.) IWDW 2004. LNCS, vol. 3304, pp. 204–217. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Ahmad-Reza Sadeghi
    • 1
  1. 1.Horst Görtz Institute for IT SecurityRuhr-University BochumGermany

Personalised recommendations