Skip to main content

Automated Discrimination of Pathological Regions in Tissue Images: Unsupervised Clustering vs. Supervised SVM Classification

  • Conference paper
Biomedical Engineering Systems and Technologies (BIOSTEC 2008)

Abstract

Recognizing and isolating cancerous cells from non pathological tissue areas (e.g. connective stroma) is crucial for fast and objective immunohistochemical analysis of tissue images. This operation allows the further application of fully-automated techniques for quantitative evaluation of protein activity, since it avoids the necessity of a preventive manual selection of the representative pathological areas in the image, as well as of taking pictures only in the pure-cancerous portions of the tissue. In this paper we present a fully-automated method based on unsupervised clustering that performs tissue segmentations highly comparable with those provided by a skilled operator, achieving on average an accuracy of 90%. Experimental results on a heterogeneous dataset of immunohistochemical lung cancer tissue images demonstrate that our proposed unsupervised approach overcomes the accuracy of a theoretically superior supervised method such as Support Vector Machine (SVM) by 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Taneja, T.K., Sharma, S.K.: Markers of Small Cell Lung Cancer. World Journal of Surgical Oncology 2(10) (2004)

    Google Scholar 

  2. Demandolx, D., Davoust, J.: Multiparameter Image Cytometry: from Confocal Micrographs to Subcellular Fluorograms. Bioimaging 5(3), 159–169 (1997)

    Article  Google Scholar 

  3. Nedzved, A., Ablameyko, S., Pitas, I.: Morphological Segmentation of Histology Cell Images. In: 15th International Conference on Pattern Recognition (ICPR 2000), vol. 1, p. 1500 (2000)

    Google Scholar 

  4. Malpica, N., de Solorzano, C.O., Vaquero, J.J., Santos, A., Vallcorba, I., Garcia-Sagredo, J.M., del Pozo, F.: Applying Watershed Algorithms to the Segmentation of Clustered Nuclei. Cytometry 28(4), 289–297 (1997)

    Article  CAS  PubMed  Google Scholar 

  5. Dybowski, R.: Neural Computation in Medicine: Perspectives and Prospects. In: Proc. of the ANNIMAB-1 Conference (Artificial Neural Networks in Medicine and Biology), pp. 26–36 (2000)

    Google Scholar 

  6. Nattkemper, T.W.: Automatic Segmentation of Digital Micrographs: A Survey. Medinfo. 11(Pt 2), 847–851 (2004)

    Google Scholar 

  7. Vapnik, V.: Statistical Learning Theory. Wiley-Interscience, New York (1998)

    Google Scholar 

  8. Angelini, E., Campanini, R., Iampieri, E., Lanconelli, N., Masotti, M., Roffilli, M.: Testing the Performances of Different Image Representation for Mass Classification in Digital Mammograms. Int. J. Mod. Phys. 17(1), 113–131 (2006)

    Article  Google Scholar 

  9. Osuna, E., Freund, R., Girrosi, F.: Training Support Vector Machines: an Application to Face Detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 1997), p. 130 (1997)

    Google Scholar 

  10. Twellmann, T., Nattkemper, T.W., Schubert, W., Ritter, H.: Cell Detection in Micrographs of Tissue Sections Using Support Vector Machines. In: Proc. of the ICANN: Workshop on Kernel & Subspace Methods for Computer Vision, Vienna, Austria, pp. 79–88 (2001)

    Google Scholar 

  11. Muller, K.R., Mika, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An Introduction to Kernel-Based Learning Algorithms. IEEE Trans. Neural Networks 12(2), 181–201 (2001)

    Article  CAS  PubMed  Google Scholar 

  12. Cai, C.Z., Wang, W.L., Chen, W.Z.: Support Vector Machine Classification of Physical and Biological Datasets. Int. J. Mod. Phys. 14(5), 575–585 (2003)

    Article  CAS  Google Scholar 

  13. Ficarra, E., Macii, E., De Micheli, G.: Computer-aided Evaluation of Protein Expression in Pathological Tissue Images. In: Proc. of IEEE Symposium on Computer-Based Medical Systems (CBMS), pp. 413–418 (2006)

    Google Scholar 

  14. Ruifrok, A.C., Johnston, D.A.: Quantification of Histochemical Staining by Color Deconvolution. Anal. Quant. Cytol. Histol. 23(4), 291–299 (2001)

    CAS  PubMed  Google Scholar 

  15. Ruifrok, A.C., Katz, R., Johnston, D.: Comparison of Quantification of Histochemical Staining by Hue-Saturation-Intensity (HSI) Transformation and Color Deconvolution. Appl. Immunohisto. M. M. 11(1), 85–91 (2004)

    Google Scholar 

  16. Brey, E.M., Lalani, Z., Hohnston, C., Wong, M., McIntire, L.V., Duke, P.J., Patrick, C.W.: Automated Selection of DAB-labeled Tissue for Immunohistochemical Quantification. J. Histochem. Cytochem. 51(5), 575–584 (2003)

    Article  CAS  PubMed  Google Scholar 

  17. Landini, G.: Software, http://www.dentistry.bham.ac.uk/landinig/software/software.html

  18. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  19. Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis. Bioinformatics 21(5), 631–643 (2005)

    Article  CAS  PubMed  Google Scholar 

  20. Rasband, W.S.: ImageJ. U.S. National Institutes of Health, Bethesda, Maryland, USA, http://rsb.info.nih.gov/ij/

  21. Sacha, J.: K-means clustering, http://ij-plugins.sourceforge.net/plugins/clustering/

  22. Anguita, D., Boni, A., Ridella, S., Rivieccio, F., Sterpi, D.: Theoretical and Practical Model Selection Methods for Support Vector Classifiers. In: Support Vector Machines: Theory and Application. Studies in Fuzziness and Soft Computing, vol. 177, pp. 159–179. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Platt, J.: Fast Training of Support Vector Machines Using Sequential Minimal Optimization. In: Advances in Kernel Methods - Support Vector Learning. MIT Press, Cambridge (1999)

    Google Scholar 

  24. Wang, L.: Support Vector Machines: Theory and Applications. Springer, Berlin (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Cataldo, S., Ficarra, E., Macii, E. (2008). Automated Discrimination of Pathological Regions in Tissue Images: Unsupervised Clustering vs. Supervised SVM Classification. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2008. Communications in Computer and Information Science, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92219-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92219-3_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92218-6

  • Online ISBN: 978-3-540-92219-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics