MM-Correction: Meta-analysis-Based Multiple Hypotheses Correction in Omic Studies

  • Christine Nardini
  • Lei Wang
  • Hesen Peng
  • Luca Benini
  • Michael D. Kuo
Part of the Communications in Computer and Information Science book series (CCIS, volume 25)


The post-Genomic Era is characterized by the proliferation of high-throughput platforms that allow the parallel study of a complete body of molecules in one single run of experiments (omic approach). Analysis and integration of omic data represent one of the most challenging frontiers for all the disciplines related to Systems Biology. From the computational perspective this requires, among others, the massive use of automated approaches in several steps of the complex analysis pipeline, often consisting of cascades of statistical tests. In this frame, the identification of statistical significance has been one of the early challenges in the handling of omic data and remains a critical step due to the multiple hypotheses testing issue, given the large number of hypotheses examined at one time. Two main approaches are currently used: p-values based on random permutation approaches and the False Discovery Rate. Both give meaningful and important results, however they suffer respectively from being computationally heavy -due to the large number of data that has to be generated-, or extremely flexible with respect to the definition of the significance threshold, leading to difficulties in standardization. We present here a complementary/alternative approach to these current ones and discuss performances, properties and limitations.


Statistical testing statistical significance multiple hypothesis testing false discovery rate statistical resampling methods statistical meta-analysis omic data 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Nardini, C., Benini, L., Micheli, G.D.: Circuits and systems for high-throughput biology. Circuits and Systems Magazine, IEEE 6(3), 10–20 (2006)CrossRefGoogle Scholar
  2. 2.
    Ramaswamy, S., Ross, K.N., Lander, E.S., Golub, T.R.: A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33(1), 49–54 (2003)CrossRefPubMedGoogle Scholar
  3. 3.
    Lapointe, J., Li, C., Higgins, J.P., van de Rijn, M., Bair, E., Montgomery, K., Ferrari, M., Egevad, L., Rayford, W., Bergerheim, U., Ekman, P., DeMarzo, A.M., Tibshirani, R., Botstein, D., Brown, P.O., Brooks, J.D., Pollack, J.R.: Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. 101, 811–816 (2004)CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Rossi, S., Masotti, D., Nardini, C., Bonora, E., Romeo, G., Macii, E., Benini, L., Volinia, S.: TOM: a web-based integrated approach for efficient identification of candidate disease genes. Nucleic Acids Res. 34, 285–292 (2006)CrossRefGoogle Scholar
  5. 5.
    Segal, E., Sirlin, C.B., Ooi, C., Adler, A.S., Gollub, J., Chen, X., Chan, B.K., Matcuk, G., Barry, C., Chang, H.Y., Kuo, M.D.: Decoding global gene expression programs in liver cancer by noninvasive imaging. Nature Biotechnology 25, 675–680 (2007)CrossRefPubMedGoogle Scholar
  6. 6.
    Diehn, M., Nardini, C., Wang, D.S., McGovern, S., Jayaraman, M., Liang, Y., Aldape, K., Cha, S., Kuo, M.D.: Identification of non-invasive imaging surrogates for brain tumor gene expression modules. PNAS 105(13), 5213–5218 (2008)CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Sokal, R.R., Rohlf, F.J.: Biometry. Freeman, New York (2003)Google Scholar
  8. 8.
    Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995)Google Scholar
  9. 9.
    Storey, J.D., Tibshirani, R.: Statistical significance for genomewide studies. PNAS 10(16), 9440–9445 (2003)CrossRefGoogle Scholar
  10. 10.
    Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. 98, 5116–5121 (2001)CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Tiffin, N., Adie, E., Turner, F., Brunner, H., van Drielnd, M., Oti, M.A., Lopez-Bigas, N., Ouzunis, C., Perez-Iratxeta, C., Andrade-Navarro, M.A., Adeyemo, A., Patti, M.E., Semple, C.A.M., Hide, W.: Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 34 (2006)Google Scholar
  12. 12.
    Hedges, L.B., Olkin, I.: Statistical Methods in Meta-Analysis. Academic Press, New York (1985)Google Scholar
  13. 13.
    Pan, K.H., Lih, C.J., Cohen, S.N.: Effects of threshold choice on biological conclusions reached during analysis of gene expression by DNA microarrays. Proc. Natl. Acad. Sci. 102(25), 8961–8965 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gentleman, R., Carey, V., Huber, W., Irizarry, R., Dudoit, S.: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Cheng, C., Pounds, S., Boyett, J., Pei, D., Kuo, M., Roussel, M.F.: Statistical significance threshold criteria for analysis of microarray gene expression data. Stat. Appl. Genet. Mol. Biol. 3, Article36 (2004)Google Scholar
  16. 16.
    Yang, J.J., Yang, M.C.: An improved procedure for gene selection from microarray experiments using false discovery rate criterion. BMC Bioinformatics 7, 15 (2006)CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liang, Y., Diehn, M., Watson, N., Bollen, A.W., Aldape, K.D., Nicholas, M.K., Lamborn, K.R., Berger, M.S., Botstein, D., Brown, P.O., Israel, M.A.: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc. Natl. Acad. Sci. 102(16), 5814–5819 (2005)CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3 (2007)Google Scholar
  19. 19.
    Watts, D.J., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)CrossRefPubMedGoogle Scholar
  20. 20.
    Lauritzen, S.L.: Graphical Models. Oxford University Press, New York (1996)Google Scholar
  21. 21.
    The Gene Ontology Consortium. Creating the gene ontology resource: Design and implementation. Genome Res. 11(8), 1425–1433 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Christine Nardini
    • 1
  • Lei Wang
    • 1
  • Hesen Peng
    • 1
  • Luca Benini
    • 2
  • Michael D. Kuo
    • 3
  1. 1.CAS-MPG PICBShanghaiPeople's Republic of China
  2. 2.DEISUniversità di BolognaBolognaItaly
  3. 3.UCSD Medical Center HillCrestSan DiegoU.S.A.

Personalised recommendations