Skip to main content

MM-Correction: Meta-analysis-Based Multiple Hypotheses Correction in Omic Studies

  • Conference paper
Book cover Biomedical Engineering Systems and Technologies (BIOSTEC 2008)

Abstract

The post-Genomic Era is characterized by the proliferation of high-throughput platforms that allow the parallel study of a complete body of molecules in one single run of experiments (omic approach). Analysis and integration of omic data represent one of the most challenging frontiers for all the disciplines related to Systems Biology. From the computational perspective this requires, among others, the massive use of automated approaches in several steps of the complex analysis pipeline, often consisting of cascades of statistical tests. In this frame, the identification of statistical significance has been one of the early challenges in the handling of omic data and remains a critical step due to the multiple hypotheses testing issue, given the large number of hypotheses examined at one time. Two main approaches are currently used: p-values based on random permutation approaches and the False Discovery Rate. Both give meaningful and important results, however they suffer respectively from being computationally heavy -due to the large number of data that has to be generated-, or extremely flexible with respect to the definition of the significance threshold, leading to difficulties in standardization. We present here a complementary/alternative approach to these current ones and discuss performances, properties and limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nardini, C., Benini, L., Micheli, G.D.: Circuits and systems for high-throughput biology. Circuits and Systems Magazine, IEEE 6(3), 10–20 (2006)

    Article  Google Scholar 

  2. Ramaswamy, S., Ross, K.N., Lander, E.S., Golub, T.R.: A molecular signature of metastasis in primary solid tumors. Nat. Genet. 33(1), 49–54 (2003)

    Article  CAS  PubMed  Google Scholar 

  3. Lapointe, J., Li, C., Higgins, J.P., van de Rijn, M., Bair, E., Montgomery, K., Ferrari, M., Egevad, L., Rayford, W., Bergerheim, U., Ekman, P., DeMarzo, A.M., Tibshirani, R., Botstein, D., Brown, P.O., Brooks, J.D., Pollack, J.R.: Gene expression profiling identifies clinically relevant subtypes of prostate cancer. Proc. Natl. Acad. Sci. 101, 811–816 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Rossi, S., Masotti, D., Nardini, C., Bonora, E., Romeo, G., Macii, E., Benini, L., Volinia, S.: TOM: a web-based integrated approach for efficient identification of candidate disease genes. Nucleic Acids Res. 34, 285–292 (2006)

    Article  Google Scholar 

  5. Segal, E., Sirlin, C.B., Ooi, C., Adler, A.S., Gollub, J., Chen, X., Chan, B.K., Matcuk, G., Barry, C., Chang, H.Y., Kuo, M.D.: Decoding global gene expression programs in liver cancer by noninvasive imaging. Nature Biotechnology 25, 675–680 (2007)

    Article  CAS  PubMed  Google Scholar 

  6. Diehn, M., Nardini, C., Wang, D.S., McGovern, S., Jayaraman, M., Liang, Y., Aldape, K., Cha, S., Kuo, M.D.: Identification of non-invasive imaging surrogates for brain tumor gene expression modules. PNAS 105(13), 5213–5218 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sokal, R.R., Rohlf, F.J.: Biometry. Freeman, New York (2003)

    Google Scholar 

  8. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995)

    Google Scholar 

  9. Storey, J.D., Tibshirani, R.: Statistical significance for genomewide studies. PNAS 10(16), 9440–9445 (2003)

    Article  Google Scholar 

  10. Tusher, V.G., Tibshirani, R., Chu, G.: Significance analysis of microarrays applied to the ionizing radiation response. Proc. Natl. Acad. Sci. 98, 5116–5121 (2001)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tiffin, N., Adie, E., Turner, F., Brunner, H., van Drielnd, M., Oti, M.A., Lopez-Bigas, N., Ouzunis, C., Perez-Iratxeta, C., Andrade-Navarro, M.A., Adeyemo, A., Patti, M.E., Semple, C.A.M., Hide, W.: Computational disease gene identification: a concert of methods prioritizes type 2 diabetes and obesity candidate genes. Nucleic Acids Res. 34 (2006)

    Google Scholar 

  12. Hedges, L.B., Olkin, I.: Statistical Methods in Meta-Analysis. Academic Press, New York (1985)

    Google Scholar 

  13. Pan, K.H., Lih, C.J., Cohen, S.N.: Effects of threshold choice on biological conclusions reached during analysis of gene expression by DNA microarrays. Proc. Natl. Acad. Sci. 102(25), 8961–8965 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gentleman, R., Carey, V., Huber, W., Irizarry, R., Dudoit, S.: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Springer, Heidelberg (2005)

    Book  Google Scholar 

  15. Cheng, C., Pounds, S., Boyett, J., Pei, D., Kuo, M., Roussel, M.F.: Statistical significance threshold criteria for analysis of microarray gene expression data. Stat. Appl. Genet. Mol. Biol. 3, Article36 (2004)

    Google Scholar 

  16. Yang, J.J., Yang, M.C.: An improved procedure for gene selection from microarray experiments using false discovery rate criterion. BMC Bioinformatics 7, 15 (2006)

    Article  PubMed  PubMed Central  Google Scholar 

  17. Liang, Y., Diehn, M., Watson, N., Bollen, A.W., Aldape, K.D., Nicholas, M.K., Lamborn, K.R., Berger, M.S., Botstein, D., Brown, P.O., Israel, M.A.: Gene expression profiling reveals molecularly and clinically distinct subtypes of glioblastoma multiforme. Proc. Natl. Acad. Sci. 102(16), 5814–5819 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bansal, M., Belcastro, V., Ambesi-Impiombato, A., di Bernardo, D.: How to infer gene networks from expression profiles. Mol. Syst. Biol. 3 (2007)

    Google Scholar 

  19. Watts, D.J., Strogatz, S.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  CAS  PubMed  Google Scholar 

  20. Lauritzen, S.L.: Graphical Models. Oxford University Press, New York (1996)

    Google Scholar 

  21. The Gene Ontology Consortium. Creating the gene ontology resource: Design and implementation. Genome Res. 11(8), 1425–1433 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nardini, C., Wang, L., Peng, H., Benini, L., Kuo, M.D. (2008). MM-Correction: Meta-analysis-Based Multiple Hypotheses Correction in Omic Studies. In: Fred, A., Filipe, J., Gamboa, H. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2008. Communications in Computer and Information Science, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92219-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92219-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92218-6

  • Online ISBN: 978-3-540-92219-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics