Advertisement

Networks in Epidemiology

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5151)

Abstract

We discuss the uses of networks as epidemiological tools to describe the interactions taking place within populations. The difficulties of accurate measurement of real-world social networks are discussed, along with modelling approaches designed to require only incomplete data. Properties of human contact networks such as clustering and variable strengths of interactions are seen to be important factors in the spread of an epidemic. We consider the evolution of a pathogen spreading through a dynamic network and show that the pattern of contacts within a host population determines the evolutionary pressures that a pathogen experiences.

Keywords

Infectious disease social contact epidemic mathematical model evolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, R.M., May, R.M.: Infectious diseases of humans. Oxford University Press, Oxford (1992)Google Scholar
  2. 2.
    Ferguson, N.M., Donnelly, C.A., Anderson, R.M.: The foot-and-mouth epidemic in Great Britain: pattern of spread and impact of interventions. Science 292, 1155–1160 (2001)CrossRefGoogle Scholar
  3. 3.
    Gilbert, M., Mitchell, A., Bourn, D., Mawdsley, J., Clifton-Hadley, R., Wint, W.: Cattle movements and bovine tuberculosis in Great Britain. Nature 435, 491–496 (2005)CrossRefGoogle Scholar
  4. 4.
    Cooper, B.: Poxy models and rash decisions. Proc. Natl. Acad. Sci. USA 103, 12221–12222 (2006)CrossRefGoogle Scholar
  5. 5.
    King, D.A., Peckham, C., Waage, J.K., Brownlie, J., Woolhouse, M.E.J.: Infectious diseases: preparing for the future. Science 313, 1392–1393 (2006)CrossRefGoogle Scholar
  6. 6.
    Edmunds, W.J., O’Callaghan, C.J., Nokes, D.J.: Who mixes with whom? A method to determine the contact patterns of adults that may lead to the spread of airborne infections. Proc. R. Soc. Lond. B 264, 949–957 (1997)CrossRefGoogle Scholar
  7. 7.
    Doherty, I.A., Padian, N.S., Marlow, C., Aral, S.O.: Determinants and consequences of sexual networks as they affect the spread of sexually transmitted infections. J. Infect. Dis. 191, S42–S54 (2005)CrossRefGoogle Scholar
  8. 8.
    Klovdahl, A.S.: Social networks and the spread of infectious diseases: the AIDS example. Soc. Sci. Med. 21, 1203–1216 (1985)CrossRefGoogle Scholar
  9. 9.
    Wasserman, S., Faust, K.: Social network analysis. Cambridge University Press, Cambridge (1994)CrossRefzbMATHGoogle Scholar
  10. 10.
    Keeling, M.J., Eames, K.T.D.: Networks and epidemic models. J. R. Soc. Interface 2, 295–307 (2005)CrossRefGoogle Scholar
  11. 11.
    Boots, M., Sasaki, A.: “Small worlds” and the evolution of virulence: infection occurs locally and at a distance. Proc. R. Soc. Lond. B 266, 1933–1938 (1999)CrossRefGoogle Scholar
  12. 12.
    Keeling, M.J., Rand, D.A., Morris, A.J.: Correlation models for childhood epidemics. Proc. R. Soc. Lond. B 264, 1149–1156Google Scholar
  13. 13.
    Keeling, M.J.: The effects of local spatial structure on epidemiological invasions. Proc. R. Soc. Lond. B 266, 859–867Google Scholar
  14. 14.
    Bearman, P.S., Moody, J., Stovel, K.: Chains of affection: the structure of adolescent romantic and sexual networks. Am. J. Soc. 110, 44–91 (2004)CrossRefGoogle Scholar
  15. 15.
    Johnson, A.M., Mercer, C.H., Erens, B., Copas, A.J., McManus, S., Wellings, K., Fenton, K.A., Korovessis, C., Macdowall, W., Nanchaha, K., Purdon, S., Field, J.: Sexual behaviour in Britain: partnerships, practices, and HIV risk behaviours. Lancet 358, 1835–1842 (2001)CrossRefGoogle Scholar
  16. 16.
    De, P., Singh, A.E., Wong, T., Yacoub, W., Jolly, A.M.: Sexual network analysis of a gonorrhoea outbreak. Sex. Transm. Infect. 80, 280–285 (2004)CrossRefGoogle Scholar
  17. 17.
    Jolly, A.M., Wylie, J.L.: Gonorrhoea and chlamydia core groups and sexual networks in Manitoba. Sex. Transm. Infect. 78, i145–i151 (2002)CrossRefGoogle Scholar
  18. 18.
    Potterat, J.J., Philips-Plummer, L., Muth, S.Q., Rothenberg, R.B., Woodhouse, D.E., Maldonado-Long, T.S., Zimmerman, H.P., Muth, J.B.: Risk network structure in the early epidemic phase of HIV transmission in Colorado Springs. Sex. Transm. Infect. 78, i159–i163 (2002)CrossRefGoogle Scholar
  19. 19.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., \(\dot{\rm A}\)berg, Y.: The web of human sexual contacts. Nature 411, 907–908 (2001)Google Scholar
  21. 21.
    Read, J.M., Keeling, M.J.: Disease evolution on networks: the role of contact structure. Proc. R. Soc. Lond. B 270, 699–708 (2003)CrossRefGoogle Scholar
  22. 22.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)CrossRefGoogle Scholar
  23. 23.
    Newman, M.E.J.: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Brockmann, D., Hufnagel, L., Geisel, T.: The scaling laws of human travel. Nature 439, 462–465 (2006)CrossRefGoogle Scholar
  25. 25.
    Eubank, S., Guclu, H., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Toroczkai, Z., Wang, N.: Modelling disease outbreaks in realistic social networks. Nature 429, 180–183 (2004)CrossRefGoogle Scholar
  26. 26.
    Ferguson, N.M., Cummings, D.T., Fraser, C., Cajka, J.C., Cooley, P.C., Burke, D.S.: Strategies for mitigating an influenza pandemic. Nature 442, 448–452 (2006)CrossRefGoogle Scholar
  27. 27.
    May, R.M.: Uses and abuses of mathematics in biology. Science 303, 790–793 (2004)CrossRefGoogle Scholar
  28. 28.
    Bauch, C., Rand, D.A.: A moment closure model for sexually transmitted disease transmission through a concurrent partnership network. Proc. R. Soc. Lond. B 267, 2019–2027Google Scholar
  29. 29.
    Eames, K.T.D., Keeling, M.J.: Modeling dynamic and network heterogeneities in the spread of sexually transmitted diseases. Proc. Natl. Acad. Sci. USA 99, 13330–13335 (2002)CrossRefGoogle Scholar
  30. 30.
    Andre, M., Ijaz, K., Tillinghast, J.D., Krebs, V.E., Diem, L.A., Metchock, B., Crisp, T., McElroy, P.D.: Transmission network analysis to complement routine tubercolosis contact investigations. Am. J. Pub. Health 96, 1–11 (2006)Google Scholar
  31. 31.
    Friedman, S.R., Neagius, A., Jose, B., Curtis, R., Goldstein, M., Ildefonso, G., Rothenberg, R.B., Des Jarlais, D.C.: Sociometric risk networks and risk for HIV infection. Am. J. Pub. Health 87, 1289–1296 (1997)CrossRefGoogle Scholar
  32. 32.
    Ghani, A.C., Garnett, G.P.: Risks of acquiring and transmitting sexually transmitted diseases in sexual partner networks. Sex. Transm. Dis. 27, 579–587 (2000)CrossRefGoogle Scholar
  33. 33.
    Christley, R.M., Pinchbeck, G.L., Bowers, R.G., Clancy, D., French, N.P., Bennett, R., Turner, J.: Infection in social networks: using network analysis to identify high-risk individuals. American Journal of Epidemiology 162, 1024–1031 (2005)CrossRefGoogle Scholar
  34. 34.
    Rothenberg, R.B., Potterat, J.J., Woodhouse, D.E., Muth, S.Q., Darrow, W.W., Klovdahl, A.S.: Social network dynamics and HIV transmission. AIDS 12, 1529–1536 (1998)CrossRefGoogle Scholar
  35. 35.
    Eames, K.T.D., Keeling, M.J.: Contact tracing and disease control. Proc. R. Soc. Lond. B 270, 2565–2571 (2003)CrossRefGoogle Scholar
  36. 36.
    Huerta, R., Tsimring, L.S.: Contact tracing and epidemics control in social networks. Phys. Rev. E 66, 056115-1–0561154 (2002)Google Scholar
  37. 37.
    Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)CrossRefGoogle Scholar
  38. 38.
    van Baalen, M.: Contact networks and the evolution of virulence. In: Dieckmann, U., Metz, J.A.J., Sabelis, M.W., Sigmund, K. (eds.) Adaptive Dynamics of Infectious Diseases: in Pursuit of Virulence Management. Cambridge University Press, Cambridge (2002)Google Scholar
  39. 39.
    Read, J.M., Keeling, M.J.: Disease evolution across a range of spatio-temporal scales. Theoretical Population Biology 70, 201–213 (2006)CrossRefzbMATHGoogle Scholar
  40. 40.
    Boots, M., Hudson, P.J., Sasaki, A.: Large Shifts in Pathogen Virulence Relate to Host Population Structure. Science 303, 842–844 (2004)CrossRefGoogle Scholar
  41. 41.
    Frank, S.A.: Models of parasite virulence. Quarterly Review of Biology 71, 37–78 (1996)CrossRefGoogle Scholar
  42. 42.
    Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Yan, G., Zhou, T., Wang, J., Fu, Z.-Q., Wang, B.H.: Epidemic spread in weighted scale-free networks. Chin. Phys. Lett. 22, 510–513 (2005)CrossRefGoogle Scholar
  44. 44.
    Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311, 88–90 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.DAMTP, Centre for Mathematical SciencesCambridgeUK
  2. 2.Faculty of Veterinary ScienceUniversity of LiverpoolThe WirralUK

Personalised recommendations